K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

$3^x.x^2=4y(y+1)$ nên $x$ chẵn. Đặt $x=2a$ ta có:

$3^{2a}.a^2=y(y+1)\Leftrightarrow (3^a.a)^2=y(y+1)$

Dễ thấy $(y,y+1)=1$ nên để tích của chúng là scp thì $y,y+1$ là scp.

Đặt $y=m^2; y+1=n^2$ với $m,n$ tự nhiên.

$\Rightarrow 1=(n-m)(n+m)$

$\Rightarrow n=1; m=0\Rightarrow y=0\Rightarrow x=0$

19 tháng 5 2021

\(x^2+\left(x+1\right)^2+\left(x+2\right)^2=y^2\Leftrightarrow3x^2+6x+5=y^2\)

\(\Leftrightarrow3\left(x+1\right)^2+2=y^2\)

Khi đó y2 chia cho 3 dư 2 (vô lý vì số chính phương chia 3 chỉ có thể dư 0 hoặc 1)

Vậy phương trình vô nghiệm

19 tháng 5 2021

\(x^2+\left(x+1\right)^2+\left(x+2\right)^2=y^2\)

\(\Leftrightarrow x^2+\left(x-1\right)^2+\left(x+2\right)^2-y^2=0\)

\(x^2+x^2-1^2+x^2+2^2-y^2=0\)

\(x^2+x^2-1+x^2+4-y^2=0\)

\(x^2+x^2+x^2-1+4-y^2=0\)

\(3x^2+3-y^2=0\)

\(3\left(x^2+1\right)-y^2=0\)

\(x^2+1-y^2=0\)

\(\left(x-y\right)^2+1=0\)

\(\left(x-y\right)^2+1^2=0\)

\(\left(x-y+1\right)^2=0\)

\(x-y+1=0\)

\(x-y=-1\)

.... 

DD
4 tháng 7 2021

Do vai trò của \(x,y,z\)như nhau nên ta giả sử \(x\ge y\ge z\ge1\).

Khi đó: \(2xyz=16+x+y+z\le16+3x\Rightarrow yz\le\frac{19}{2}\Rightarrow z^2\le\frac{19}{2}\Rightarrow z\le3\).

Với \(z=1\)\(2xy=17+x+y\Leftrightarrow\left(2x-1\right)\left(2y-1\right)=35=1.35=5.7\)

suy ra \(\hept{\begin{cases}2x-1=35\\2y-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=18\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}2x-1=7\\2y-1=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\).

Với \(z=2\)\(4xy=18+x+y\Leftrightarrow\left(4x-1\right)\left(4y-1\right)=73=1.73\)

suy ra \(\hept{\begin{cases}4x-1=73\\4y-1=1\end{cases}}\)(loại vì không có nghiệm nguyên)

Với \(z=3\):  \(6xy=19+x+y\Leftrightarrow\left(6x-1\right)\left(6y-1\right)=115=1.115=5.23\)

suy ra \(\hept{\begin{cases}6x-1=115\\6y-1=1\end{cases}}\)không có nghiệm nguyên hoặc \(\hept{\begin{cases}6x-1=23\\6y-1=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)(loại vì \(y< z\))

Vậy phương trình đã cho có nghiệm \(\left(18,1,1\right),\left(4,3,1\right)\)và các hoán vị.