Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^y+y^x+x^3+y^3+1+3\left(x+y\right)\left(x+1\right)\left(y+1\right)=x^3+y^3+1+z\)
\(\Leftrightarrow x^y+y^x+3\left(x+y\right)\left(y+1\right)\left(x+1\right)=z\)
Do \(VT>3\Rightarrow z>3\Rightarrow z\) lẻ đồng thời z không chia hết cho 3
Nếu \(x;y\) đều lẻ hoặc đều chẵn \(\Rightarrow VT\) chẵn (không thỏa mãn)
\(\Rightarrow\) x và y có đúng 1 số chẵn, do vai trò của x; y như nhau, giả sử y chẵn \(\Rightarrow y=2\)
\(\Rightarrow x^2+2^x+9\left(x+2\right)\left(x+1\right)=z\)
- Nếu \(x>3\Rightarrow x^2\) chia 3 dư 1, đồng thời do x lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow2^x=2^{2k+1}=2.4^k\) chia 3 dư 2
\(\Rightarrow x^2+2^x\) chia hết cho 3 \(\Rightarrow VT\) chia hết cho 3 (không thỏa mãn)
\(\Rightarrow x\le3\Rightarrow x=3\Rightarrow z=197\) (thỏa mãn)
Vậy \(\left(x;y;z\right)=\left(3;2;197\right)\)
ko phải bài của mk nên bn ko tick cx đc,mk chỉ đăng lên để giúp bn thôi
Vai trò bình đẳng của \(x;y;z\) trong phương trình, ta có: \(x\le y\le z\)
Mà: \(x;y;z\) nguyên dương\(\Rightarrow xyz\ne0\)
Do: \(x\le y\le z\Leftrightarrow xyz=x+y+z\le3z\Leftrightarrow xy\le3\Leftrightarrow xy\in\left\{1;2;3\right\}\)
+) Nếu \(xy=1\Leftrightarrow x=y=1\) thay vào phương trình ta có: \(2+z=z\) (Vô lý)
+) Nếu \(xy=2\) mà \(x\le y\Leftrightarrow x=1;y=2\) thay vào phương trình ta có: \(z=3\)
+) Nếu \(xy=3\) mà \(x\le y\Leftrightarrow x=1;y=3\) thay vào phương trình ta có: \(z=2\)
Vậy nghiệm nguyên dương của phương trình là các hoán vị của \(1;2;3\)
Ta có : \(x+y+z=xyz\)(1)
Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét \(x\le y\le z\)
Vì x, y, z nguyên dương nên \(xyz\ne0\), do \(x\le y\le z\)
\(\Rightarrow xyz=x+y+z\le3z\)
\(\Rightarrow xy\le3\)
.\(\Rightarrow xy\in\left\{1;2;3\right\}\)
Nếu xy = 1 => x = y = 1, thay vào (1) ta có : 2 + z = z (vô lí)
Nếu xy = 2, do x \(\le\) y nên x = 1 và y = 2, thay vào (1) => z = 3.
Nếu xy = 3, do x \(\le\) y nên x = 1 và y = 3, thay vào (1) => z = 2.
Vậy nghiệm nguyên dương của phương trình (1) là các hoán vị của (1 ; 2 ; 3).