K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2015

\(x_1 = 5 \cos (\omega t + \varphi)cm.\)

\(x_2 = A_2 \cos (\omega t - \frac{\pi}{4})cm.\)

\(x= A \cos (\omega t - \frac{\pi}{12})cm.\)

Vẽ giản đồ véc tơ như hình vẽ

A 2 A A 1 0 φ π/6 -π/4 -π/12 3π/4-φ 3π/4-φ

Áp dụng định lý hàm số Sin ta có:

Xét: \(\triangle OA_1A:\) \(\frac{A}{\sin OA_1A} = \frac{A_1}{\sin OAA_1} \) 

                  => \(\frac{A}{\sin (\frac{3\pi}{4}-\varphi)} = \frac{A_1}{\sin (\frac{\pi}{6})} \)

                  => \(A= \frac{A_1}{\sin (\frac{\pi}{6})} .\sin (\frac{3\pi}{4}-\varphi).(*)\)

TH1: \(A= A _{max} <=> \sin (\frac{3\pi}{4}-\varphi) = 1\)

       => \(A_{max}= \frac{A_1}{\sin (\frac{\pi}{6})}= 10cm.(1)\)

TH2: \(A = \frac{A_{max}}{2} => \sin (\frac{3\pi}{4}-\varphi) = \frac{1}{2}.\)

                       => \(\frac{3\pi}{4} - \varphi = \frac{\pi}{6}\) 

                       => \(\varphi = \frac{7\pi}{12}.(2)\)

   Xét: \(\triangle OA_2A:\) \(\frac{A}{\sin OA_2A} = \frac{A_2}{\sin OAA_2} \) 

                  => \(\frac{A}{\sin (\frac{3\pi}{4}-\varphi)} = \frac{A_2}{\sin (\varphi+\frac{\pi}{12})} \)

                 => \(A_2= \frac{A_{max}}{\sin (\frac{3\pi}{4}-\varphi)} .\sin (\frac{\pi}{12}+\varphi).(3)\)

Thay \((1); (2)\) vào \((3)\) ta được: \(A_2= \frac{10}{0,5} .\sin (\frac{\pi}{12}+\frac{7\pi}{12}) = \frac{10}{0,5}.\frac{\sqrt{3}}{2} = 10 \sqrt{3}cm.\)

Chọn đáp án.C.\(10\sqrt{3}cm.\)

 

 

 

5 tháng 3 2015

Bạn kiểm tra lại xem giả thiết còn thiếu gì không?

29 tháng 6 2018

Đáp án A

Từ hình vẽ, áp dụng định lý hàm cos trong tam giác ta có:

Phương trình trên luôn có nghiệm nên:

19 tháng 10 2018

Chọn đáp án A

7 tháng 2 2017

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

- Từ hình vẽ, áp dụng định lý hàm cos trong tam giác ta có:

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

- Phương trình trên luôn có nghiệm nên:

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

- Với: Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

thay vào phương trình trên ta được: Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

5 tháng 6 2016

$x_1$ vuông pha với $x_2$ $\Rightarrow $$x_{12}$=$\sqrt{16^2+A_2^2}$

Đề không tồn tại sự tổng hợp dao động này thì $A_{123}$ max < 25cm

$\Rightarrow $ $16^2$+$A_2^2$+25+2.5.$\sqrt{16^2+A_2^2}$ < $25^2$

$\sqrt{16^2+A_2^2}$&lt;20$\Rightarrow $ $A_2$ < 12

Chọn B.

9 tháng 12 2017

  Đáp án D

+ Ta có:

  Để phương trình có nghiệm A2 thì ∆   =   3 A 2 - 4 ( A 2 - 25 )   ≥   0   → A m a x = 10 cm

→ Với A = 0,5Amax = 5 cm → A 2 = 5 3 c m

24 tháng 11 2018

+ Ta có x1 = x – x2 

→  Để phương trình có nghiệm A2 thì 

→ Với A = 0,5Amax = 5 cm 

16 tháng 2 2017

14 tháng 4 2023

pi / 3

 

8 tháng 6 2018

Giải thích: Đáp án B

Phương pháp: Sử dụng giản đồ vecto

Cách giải:

-  Từ dữ kiện đề bài  ta vẽ được giản đồ vecto:

- Xét ∆OA2A ta có:  

- Sử dụng định lí hàm số sin trong ∆OA2A ta có: