K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2018

Chọn A

+ Hai dao động vuông pha:

+ Gia tốc cực đại: amax = ω2A = 102.0,075 = 7,5 m/s2.

9 tháng 3 2017

- Ta có :

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

- Đối chiếu với :

Bài tập trắc nghiệm Vật Lí 12 | Câu hỏi trắc nghiệm Vật Lí 12

13 tháng 10 2019

Chọn đáp án C

12 tháng 8 2022

cho em hỏi tại s đoạn đối chiếu lại thành pi/2 vậy ạ?

 

21 tháng 7 2017

Đáp án C

2 tháng 10 2019

Với hai dao động vuông pha 

Đáp án A

12 tháng 7 2016

Ta có $x_1=x_{12}-x_2=x_{12}-(x_{23}-(x_{13}-x_1)$

$\Rightarrow$ $2x_1=x_{12}-x_{23}+x_{13}$. Bấm máy tính ta được

${x_1}={3\sqrt{6}}\cos\left({\pi t + \dfrac{\pi}{12}} \right)$

${x_3}={3\sqrt{2}}\cos\left({\pi t + \dfrac{7\pi}{12}} \right)$

Suy ra hai dao động vuông pha, như vậy khi x1 đạt giá trị cực đại thì x3 bằng 0.

banh

25 tháng 11 2016

cách bấm máy để ra phương trình dao động làm như thế nào vậy ạ

12 tháng 3 2015

\(x_1 = 5 \cos (\omega t + \varphi)cm.\)

\(x_2 = A_2 \cos (\omega t - \frac{\pi}{4})cm.\)

\(x= A \cos (\omega t - \frac{\pi}{12})cm.\)

Vẽ giản đồ véc tơ như hình vẽ

A 2 A A 1 0 φ π/6 -π/4 -π/12 3π/4-φ 3π/4-φ

Áp dụng định lý hàm số Sin ta có:

Xét: \(\triangle OA_1A:\) \(\frac{A}{\sin OA_1A} = \frac{A_1}{\sin OAA_1} \) 

                  => \(\frac{A}{\sin (\frac{3\pi}{4}-\varphi)} = \frac{A_1}{\sin (\frac{\pi}{6})} \)

                  => \(A= \frac{A_1}{\sin (\frac{\pi}{6})} .\sin (\frac{3\pi}{4}-\varphi).(*)\)

TH1: \(A= A _{max} <=> \sin (\frac{3\pi}{4}-\varphi) = 1\)

       => \(A_{max}= \frac{A_1}{\sin (\frac{\pi}{6})}= 10cm.(1)\)

TH2: \(A = \frac{A_{max}}{2} => \sin (\frac{3\pi}{4}-\varphi) = \frac{1}{2}.\)

                       => \(\frac{3\pi}{4} - \varphi = \frac{\pi}{6}\) 

                       => \(\varphi = \frac{7\pi}{12}.(2)\)

   Xét: \(\triangle OA_2A:\) \(\frac{A}{\sin OA_2A} = \frac{A_2}{\sin OAA_2} \) 

                  => \(\frac{A}{\sin (\frac{3\pi}{4}-\varphi)} = \frac{A_2}{\sin (\varphi+\frac{\pi}{12})} \)

                 => \(A_2= \frac{A_{max}}{\sin (\frac{3\pi}{4}-\varphi)} .\sin (\frac{\pi}{12}+\varphi).(3)\)

Thay \((1); (2)\) vào \((3)\) ta được: \(A_2= \frac{10}{0,5} .\sin (\frac{\pi}{12}+\frac{7\pi}{12}) = \frac{10}{0,5}.\frac{\sqrt{3}}{2} = 10 \sqrt{3}cm.\)

Chọn đáp án.C.\(10\sqrt{3}cm.\)

 

 

 

5 tháng 3 2015

Bạn kiểm tra lại xem giả thiết còn thiếu gì không?