Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
Vì \(m^2+1>0\) nên hs nghịch biến trong khoảng \(\left(-\infty;2m\right)\)
Bài 3:
6: \(x< 0\) nên \(y=\sqrt[3]{x}\) nghịch biến
Câu 5:
\(\Leftrightarrow-x^2+7x-9+2x-9=0\)
\(\Leftrightarrow x^2-9x+18=0\)
=>x=3
=>Chọn A
a, Ta có : \(\sin^2x+\cos^2x=1\)
\(\Rightarrow\sin x=\sqrt{1-\cos^2x}=\left|\dfrac{\sqrt{15}}{4}\right|\)
Mà \(0< x< \dfrac{\pi}{2}\)
\(\Rightarrow\sin x=\dfrac{\sqrt{15}}{4}\)
Ta lại có : \(\left\{{}\begin{matrix}\sin2x=2\sin x\cos x=\dfrac{\sqrt{15}}{8}\\\cos2x=2\cos^2x-1=-\dfrac{7}{8}\end{matrix}\right.\)
Vậy ...
c, Ta có : \(\tan2x=\dfrac{2\tan x}{1-\tan^2x}=\dfrac{4}{3}=\dfrac{\sin2x}{\cos2x}\)
- Ta có HPT : \(\left\{{}\begin{matrix}\sin^22x+\cos^22x=1\\3\sin2x-4\cos2x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\left|\dfrac{4}{5}\right|\\\cos2x=\left|\dfrac{3}{5}\right|\end{matrix}\right.\)
Lại có : \(\pi< x< \dfrac{3}{2}\pi\)
\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\dfrac{4}{5}\\\cos2x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
Tiền lời khi bán 1 đôi giày: \(x-30\) (đô la)
Số tiền lời mà cửa hàng thu được:
\(\left(x-30\right)\left(80-x\right)=-x^2+110x-2400=-\left(x-55\right)^2+625\le625\)
Dấu "=" xảy ra khi \(x-55=0\Leftrightarrow x=55\)
Vậy cửa hàng bán với giá 55 đô la 1 đôi giày sẽ thu được lời lớn nhất
ĐKXĐ: \(1\le x\le4\)
Đặt \(\sqrt{x-1}+\sqrt{4-x}=t\Rightarrow t^2=3+2\sqrt{\left(x-1\right)\left(4-x\right)}\)
\(\Rightarrow-\sqrt{\left(x-1\right)\left(4-x\right)}=-\dfrac{1}{2}t^2+\dfrac{3}{2}\)
Ta có:
\(\sqrt{x-1}+\sqrt{4-x}\le\sqrt{2\left(x-1+4-x\right)}=\sqrt{6}\)
\(\sqrt{x-1}+\sqrt{4-x}\ge\sqrt{x-1+4-x}=\sqrt{3}\)
\(\Rightarrow t\in\left[\sqrt{3};\sqrt{6}\right]\)
Phương trình trở thành:
\(-\dfrac{1}{2}t^2+t+\dfrac{3}{2}=m\)
Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+t+\dfrac{3}{2}\) với \(t\in\left[\sqrt{3};\sqrt{6}\right]\)
\(a=-\dfrac{1}{2}< 0;-\dfrac{b}{2a}=1< \sqrt{3}\)
\(\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[\sqrt{3};\sqrt{6}\right]\)
\(\Rightarrow f\left(\sqrt{6}\right)\le f\left(t\right)\le f\left(\sqrt{3}\right)\Rightarrow\dfrac{-3+2\sqrt{6}}{2}\le f\left(t\right)\le\sqrt{3}\)
Vậy pt đã cho có nghiệm khi \(\dfrac{-3+2\sqrt{6}}{2}\le m\le\sqrt{3}\)
Bài 1.19:
d: A=[-3;3]
B(-4;1)
\(A\cap B\)=[-3;1)
\(A\cup B=\)(-4;3]
a. BPT đã cho vô nghiệm khi:
\(f\left(x\right)\ge0\) nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m+2\right)^2-\left(3m^2+5m-8\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow-2m^2-m+12\le0\) \(\Rightarrow\left[{}\begin{matrix}m\ge\dfrac{-1+\sqrt{97}}{4}\\m\le\dfrac{-1-\sqrt{97}}{4}\end{matrix}\right.\)
b.
\(f\left(x\right)=0\) có 2 nghiệm pb
\(\Leftrightarrow\Delta'=-2m^2-m+12>0\)
\(\Leftrightarrow\dfrac{-1-\sqrt{97}}{4}< m< \dfrac{-1+\sqrt{97}}{4}\)