K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2021

Câu 5: 

\(\Leftrightarrow-x^2+7x-9+2x-9=0\)

\(\Leftrightarrow x^2-9x+18=0\)

=>x=3

=>Chọn A

29 tháng 12 2021

Câu 2: C

29 tháng 12 2021

CÁCH LÀM SAO Ạ.

NV
20 tháng 1 2022

ĐKXĐ: \(1\le x\le4\)

Đặt \(\sqrt{x-1}+\sqrt{4-x}=t\Rightarrow t^2=3+2\sqrt{\left(x-1\right)\left(4-x\right)}\)

\(\Rightarrow-\sqrt{\left(x-1\right)\left(4-x\right)}=-\dfrac{1}{2}t^2+\dfrac{3}{2}\)

Ta có:

\(\sqrt{x-1}+\sqrt{4-x}\le\sqrt{2\left(x-1+4-x\right)}=\sqrt{6}\)

\(\sqrt{x-1}+\sqrt{4-x}\ge\sqrt{x-1+4-x}=\sqrt{3}\)

\(\Rightarrow t\in\left[\sqrt{3};\sqrt{6}\right]\)

Phương trình trở thành:

\(-\dfrac{1}{2}t^2+t+\dfrac{3}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+t+\dfrac{3}{2}\) với \(t\in\left[\sqrt{3};\sqrt{6}\right]\)

\(a=-\dfrac{1}{2}< 0;-\dfrac{b}{2a}=1< \sqrt{3}\)

\(\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[\sqrt{3};\sqrt{6}\right]\)

\(\Rightarrow f\left(\sqrt{6}\right)\le f\left(t\right)\le f\left(\sqrt{3}\right)\Rightarrow\dfrac{-3+2\sqrt{6}}{2}\le f\left(t\right)\le\sqrt{3}\)

Vậy pt đã cho có nghiệm khi \(\dfrac{-3+2\sqrt{6}}{2}\le m\le\sqrt{3}\)

20 tháng 1 2022

em cảm ơn nhiều lắm ạ

 

29 tháng 11 2021

29 tháng 11 2021

Không có mô tả.

Không biết nãy bị lỗi ở đâu, mình gửi lại:<

Câu 7: B

Câu 8: C

Câu 10: A

Cách làm 😥😥

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Tờ 1

Câu 1: A

Câu 2: B

Câu 3: C

Câu 4: B

Câu 1 dạng 2: D

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Tờ 2:

Câu 2: 14 không phải số nguyên tố 

Câu 3: D

Câu 1: A

Câu 2: B

Câu 3: B