K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 11 2021

Tiền lời khi bán 1 đôi giày: \(x-30\) (đô la)

Số tiền lời mà cửa hàng thu được:

\(\left(x-30\right)\left(80-x\right)=-x^2+110x-2400=-\left(x-55\right)^2+625\le625\)

Dấu "=" xảy ra khi \(x-55=0\Leftrightarrow x=55\)

Vậy cửa hàng bán với giá 55 đô la 1 đôi giày sẽ thu được lời lớn nhất

Bài 6:

b: PTHĐGĐ là:

\(x^2+4x-1=x-3\)

\(\Leftrightarrow x^2+3x-4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=-7\\y=-2\end{matrix}\right.\)

5 tháng 11 2021

Có thể giúp em mấy câu trắc nghiệm đc ko ạ

29 tháng 12 2021

Câu 5: 

\(\Leftrightarrow-x^2+7x-9+2x-9=0\)

\(\Leftrightarrow x^2-9x+18=0\)

=>x=3

=>Chọn A

8 tháng 5 2021

a, Ta có : \(\sin^2x+\cos^2x=1\)

\(\Rightarrow\sin x=\sqrt{1-\cos^2x}=\left|\dfrac{\sqrt{15}}{4}\right|\)

\(0< x< \dfrac{\pi}{2}\)

\(\Rightarrow\sin x=\dfrac{\sqrt{15}}{4}\)

Ta lại có : \(\left\{{}\begin{matrix}\sin2x=2\sin x\cos x=\dfrac{\sqrt{15}}{8}\\\cos2x=2\cos^2x-1=-\dfrac{7}{8}\end{matrix}\right.\)

Vậy ...

c, Ta có : \(\tan2x=\dfrac{2\tan x}{1-\tan^2x}=\dfrac{4}{3}=\dfrac{\sin2x}{\cos2x}\)

- Ta có HPT : \(\left\{{}\begin{matrix}\sin^22x+\cos^22x=1\\3\sin2x-4\cos2x=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\left|\dfrac{4}{5}\right|\\\cos2x=\left|\dfrac{3}{5}\right|\end{matrix}\right.\)

Lại có : \(\pi< x< \dfrac{3}{2}\pi\)

\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\dfrac{4}{5}\\\cos2x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy ...

 

17 tháng 3 2021

undefined

NV
18 tháng 3 2021

a. BPT đã cho vô nghiệm khi:

\(f\left(x\right)\ge0\) nghiệm đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}a=1>0\\\Delta'=\left(m+2\right)^2-\left(3m^2+5m-8\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow-2m^2-m+12\le0\) \(\Rightarrow\left[{}\begin{matrix}m\ge\dfrac{-1+\sqrt{97}}{4}\\m\le\dfrac{-1-\sqrt{97}}{4}\end{matrix}\right.\)

b.

\(f\left(x\right)=0\) có 2 nghiệm pb 

\(\Leftrightarrow\Delta'=-2m^2-m+12>0\)

\(\Leftrightarrow\dfrac{-1-\sqrt{97}}{4}< m< \dfrac{-1+\sqrt{97}}{4}\)

1 tháng 5 2021

1.

undefined

NV
20 tháng 1 2022

ĐKXĐ: \(1\le x\le4\)

Đặt \(\sqrt{x-1}+\sqrt{4-x}=t\Rightarrow t^2=3+2\sqrt{\left(x-1\right)\left(4-x\right)}\)

\(\Rightarrow-\sqrt{\left(x-1\right)\left(4-x\right)}=-\dfrac{1}{2}t^2+\dfrac{3}{2}\)

Ta có:

\(\sqrt{x-1}+\sqrt{4-x}\le\sqrt{2\left(x-1+4-x\right)}=\sqrt{6}\)

\(\sqrt{x-1}+\sqrt{4-x}\ge\sqrt{x-1+4-x}=\sqrt{3}\)

\(\Rightarrow t\in\left[\sqrt{3};\sqrt{6}\right]\)

Phương trình trở thành:

\(-\dfrac{1}{2}t^2+t+\dfrac{3}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+t+\dfrac{3}{2}\) với \(t\in\left[\sqrt{3};\sqrt{6}\right]\)

\(a=-\dfrac{1}{2}< 0;-\dfrac{b}{2a}=1< \sqrt{3}\)

\(\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[\sqrt{3};\sqrt{6}\right]\)

\(\Rightarrow f\left(\sqrt{6}\right)\le f\left(t\right)\le f\left(\sqrt{3}\right)\Rightarrow\dfrac{-3+2\sqrt{6}}{2}\le f\left(t\right)\le\sqrt{3}\)

Vậy pt đã cho có nghiệm khi \(\dfrac{-3+2\sqrt{6}}{2}\le m\le\sqrt{3}\)

20 tháng 1 2022

em cảm ơn nhiều lắm ạ

 

AH
Akai Haruma
Giáo viên
1 tháng 12 2021

Lời giải:

$\overrightarrow{MA}=(1-x, 3-y), \overrightarrow{MB}=(4-x, 2-y)$

Để $MAB$ là tam giác vuông cân tại $M$ thì:
\(\left\{\begin{matrix} \overrightarrow{MA}.\overrightarrow{MB}=0\\ MA^2=MB^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (1-x)(4-x)+(3-y)(2-y)=0\\ (1-x)^2+(3-y)^2=(4-x)^2+(2-y)^2\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x^2-5x+y^2-5y+10=0\\ 6x-2y-10=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^2-5x+y^2-5y+10=0\\ y=3x-5\end{matrix}\right.\)

\(\Leftrightarrow (x,y)=(2,1), (3,4)\)

 

12 tháng 11 2021

Đề đâu mà giúp?

12 tháng 11 2021

Sorry mìk tạo lộn