Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.1
Pt có 2 nghiệm trái dấu và tổng 2 nghiệm bằng -3 khi:
\(\left\{{}\begin{matrix}ac< 0\\x_1+x_2=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(m+2\right)< 0\\\dfrac{2m+1}{m+2}=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m=-\dfrac{7}{5}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
b.
Pt có nghiệm kép khi:
\(\left\{{}\begin{matrix}m+2\ne0\\\Delta=\left(2m+1\right)^2-8\left(m+2\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne-2\\4m^2-4m-15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{2}\\m=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x^2+5y^2+5xy-15=0\\2x^2+2y^2-xy+x+y=5\end{matrix}\right.\)
Trừ vế cho vế của pt trên cho pt dưới:
\(3x^2+3y^2+6xy-\left(x+y\right)-15=-5\)
\(\Leftrightarrow3\left(x+y\right)^2-\left(x+y\right)-10=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=2\\x+y=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=2-x\\y=-\dfrac{5}{3}-x\end{matrix}\right.\)
Thay vào pt đầu giải pt bậc 2 một ẩn như bt
5:
a: (C): x^2-4x+4+y^2-2y+1-9=0
=>(x-2)^2+(y-1)^2=9
=>R=3; I(2;1)
b: vecto IM=(-1;3)
=>(d) có VTPT là (-1;3)
Phương trình d là;
-1(x-1)+3(y-4)=0
=>-x+1+3y-12=0
=>-x+3y-11=0
Pt đã cho có nghiệm duy nhất khi và chỉ khi:
\(m^2-4\ne0\Rightarrow m\ne\pm2\)
\(\Rightarrow\) Có \(5-\left(-5\right)+1-2=9\) giá trị nguyên của m
Lời giải:ĐK: $x\in\mathbb{R}$
PT $\Leftrightarrow 5\sqrt{x^2+5x+28}=x^2+5x+28-24$
Đặt $\sqrt{x^2+5x+28}=a(a\geq 0)$ thì pt trở thành:
$5a=a^2-24$
$\Leftrightarrow a^2-5a-24=0$
$\Leftrightarrow (a+3)(a-8)=0$
Vì $a\geq 0$ nên $a=8$
$\Leftrightarrow x^2+5x+28=64$
$\Leftrightarrow x^2+5x-36=0$
$\Leftrightarrow x=4$ hoặc $x=-9$
ĐKXĐ: \(-1\le x\le4\)
\(\Leftrightarrow\left(x-3\right)\sqrt{1+x}-\left(x-3\right)+x-x\sqrt{4-x}=2x^2-6x\)
\(\Leftrightarrow\left(x-3\right)\left(\sqrt{1+x}-1\right)+x\left(1-\sqrt{4-x}\right)=2x^2-6x\)
\(\Leftrightarrow\dfrac{x\left(x-3\right)}{\sqrt{1+x}+1}+\dfrac{x\left(x-3\right)}{1+\sqrt{4-x}}=2\left(x^2-3x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x=0\Rightarrow x=...\\\dfrac{1}{\sqrt{1+x}+1}+\dfrac{1}{1+\sqrt{4-x}}=2\left(1\right)\end{matrix}\right.\)
Xét (1), do \(VT< \dfrac{1}{1}+\dfrac{1}{1}=2\Rightarrow VT< VP\Rightarrow\left(1\right)\) vô nghiệm
Vậy ...
Bài 3.7
a: Thay x=2 vào y=3x+2, ta được:
\(y=3\cdot2+2=8\)
Thay y=2 vào y=-3x+4, ta được:
-3x+4=2
=>-3x=-2
=>x=2/3
Vì (d) đi qua (2;8) và (2/3;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=8\\\dfrac{2}{3}a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{9}{2}\\b=-1\end{matrix}\right.\)
b: Tọa độ giao điểm của hai đường \(y=-\dfrac{1}{2}x+1;y=3x+5\) là:
\(\left\{{}\begin{matrix}3x+5=-\dfrac{1}{2}x+1\\y=3x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{2}x=-4\\y=3x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{8}{7}\\y=-\dfrac{24}{7}+5=\dfrac{11}{7}\end{matrix}\right.\)
Vì (d)//y=1/2x nên a=1/2
Vậy: (d): y=1/2x+b
Thay x=-8/7 và y=11/7 vào (d), ta được:
\(b-\dfrac{1}{2}\cdot\dfrac{8}{7}=\dfrac{11}{7}\)
hay b=15/7