Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
Áp dụng tính chất DTSBN ta có:
x-1/3=y-2/2=z-3/1=x-1+y-2+z-3/3+2+1=x+y+z-6/6=30-6/6=24/6=4
Suy ra: x-1/3=y-2/2=z-3/1=4
Suy ra: x-1=12 y-2=8 z-3=4
Suy ra: x=13 y=10 z=7
Suy ra: x.y-y.z=13.10-10.7=130-70=60
Giải:
Ta có:
x.y=-30 => \(\frac{x}{-30}=\frac{1}{y}\)(1)
y.z=42 => \(\frac{z}{42}=\frac{1}{y}\)(2)
Từ (1) và (2) => \(\frac{x}{-30}=\frac{z}{42}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{x}{-30}=\frac{z}{42}=\frac{z-x}{42-\left(-30\right)}=\frac{12}{72}=\frac{1}{6}\)
\(\frac{x}{-30}=\frac{1}{6}\)=> x=-5
\(\frac{z}{42}=\frac{1}{6}\)=>z=7
Thay x=-5 vào x.y=-30 ta được:
-5.y=-30=>y=-6
Vậy x=-5;y=-6;z=7
Đúng thì k mình nhé!!!
Ta có:\(xy-yz\)=-30-42
=>\(y\left(x-z\right)\)=-72
=>-12\(y\)=-72
=>\(y\)=6
vì \(xy=-30\)
\(\Leftrightarrow\) \(x.6=-30\)
\(\Leftrightarrow\)\(x=-5\)
Vì \(z-x=-12\)
\(\Leftrightarrow\)\(z-\left(-5\right)=-12\)
\(\Leftrightarrow\)\(z+5=-12\)
\(\Leftrightarrow\)\(z=-17\)
VẬY \(\left(x;y;z\right)=\left(6;-5;-17\right)\)
suy ra: (x.y)/(y.z)=-30/42 suy ra x/z=-5/7 suy ra x=-5;z=7 suy ra y=-30:-5=6
Vậy x=-5 ; z=7 ;y=6
Tìm giá trị nhỏ nhất của biểu thức A = /x+1/ + /x-2017/ với x là số nguyên
1) ta có x.y=-30=>y=\(-\frac{30}{x}\)
z-x=-12=> z=-12-x
nên y.z=\(-\frac{30}{x}.\left(-12-x\right)=42\)
\(=\frac{360}{x}-\frac{30x}{x}=42\)
\(=\frac{360-30x}{x}=42\)
\(=>360-30x=42x\)
\(=360-30x-42x=0\)
\(=360-72x=0\)
\(< =>72x=360\)
\(x=5\)=> \(y=-6\); \(z=-7\)
Theo bài ra ta cs
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) ; (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
ADTC dãy tỉ số bằng nhau ta cs
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}}\)
Như vậy ta chọn : A