K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2022

\(B=x^{2020}-2018x^{2019}-2018x^{2018}-...-2018x+1\)

\(=x^{2020}-2019x^{2019}+x^{2019}-2019x^{2018}+x^{2018}-2019x^{2017}+...+x^2-2019x+x+1\)

\(=x^{2019}\left(x-2019\right)+x^{2018}\left(x-2019\right)+x^{2017}\left(x-2019\right)+...+x\left(x-2019\right)+x+1\)Thay \(x=2019\) vào B ta có:

\(B=2019^{2019}\left(2019-2019\right)+2019^{2018}\left(2019-2019\right)+2019^{2017}\left(2019-2019\right)+...+2019\left(2019-2019\right)+2019+1\)

\(=2019+1=2020\)

Ta có: x=2017

nên x+1=2018

Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)

\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)

=-1

8 tháng 3 2021

@ 肖战Daytoy_1005 giup

16 tháng 7 2019

Vì \(x=2017\Rightarrow x+1=2018\)

Thay \(x+1=2018\)vào biểu thức A ta được :

\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)

\(=1\)

16 tháng 7 2019

Tại x=2017 thì 2018 = x + 1 

Khí đó \(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+x+1\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)

\(=1\)

\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)

\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)

\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)

\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)

\(A=-1\)

15 tháng 1 2018
nhanh ho mk nha
6 tháng 4 2020

pt \(\Leftrightarrow x^2+x-2019x-2019=0\)

\(\Leftrightarrow x\left(x+1\right)-2019\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2019\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2019\end{matrix}\right.\)

Vậy ...

6 tháng 4 2020

huhu bạn ơi hình như sai đề rồi á

AH
Akai Haruma
Giáo viên
24 tháng 12 2018

Lời giải:

\(a=2018x+2015; b=2018x+2013; c=2019x+2019\)

\(\Rightarrow a-b=2; b-c=-x-6; c-a=x+4\)

Ta có:

\(a^2+b^2+c^2-ab-bc-ac=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}\)

\(=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=\frac{2^2+(-x-6)^2+(x+4)^2}{2}\)

\(=\frac{2x^2+20x+56}{2}=x^2+10x+28\)

1 tháng 4 2019

\(x^2+2017x\le2018x+2019\)

\(\Rightarrow x^2-x-2019\le0\)

Ta có: \(VT=x^2-x-2019=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-2019\)

\(=\left(x-\frac{1}{2}\right)^2-\frac{8077}{4}\)

\(=\left(x-\frac{1}{2}-\sqrt{\frac{8077}{4}}\right)\left(x-\frac{1}{2}+\sqrt{\frac{8077}{4}}\right)\le0\)

\(\Rightarrow\frac{1}{2}-\sqrt{\frac{8077}{4}}\le x\le\frac{1}{2}+\sqrt{\frac{8077}{4}}\)

Do x nguyên nên \(-44\le x\le45\)

Auto làm nốt

20 tháng 2 2019

a) \(x^4+2019x^2+2018x+2019\)

\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)

\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)

\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)

b) \(E=2x^2-8x+1=2x^2-8x+8-7\)

\(=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\)

Vì \(2\left(x-2\right)^2\ge0\forall x\Rightarrow E\ge-7\)

Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy MinE = -7 <=> x = 2

20 tháng 2 2019

b) \(E=2x^2-8x+1\)

\(E=2\left(x^2-4x+\frac{1}{2}\right)\)

\(E=2\left(x^2-2\cdot x\cdot2+2^2+\frac{7}{2}\right)\)

\(E=2\left[\left(x-2\right)^2+\frac{7}{2}\right]\)

\(E=2\left(x-2\right)^2+7\ge7\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy....