Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x=2017
nên x+1=2018
Ta có: \(P=x^{15}-2018x^{14}+2018x^{13}-2018x^{12}+...+2018x^3-2018x^2+2018x-2018\)
\(=x^{15}-\left(x+1\right)\cdot x^{14}+\left(x+1\right)\cdot x^{13}-\left(x+1\right)\cdot x^{12}+...+\left(x+1\right)\cdot x^3-\left(x+1\right)\cdot x^2+\left(x+1\right)\cdot x-\left(x+1\right)\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+...+x^3-x^3+x^2-x^2+x-x-1\)
=-1
Vì \(x=2017\Rightarrow x+1=2018\)
Thay \(x+1=2018\)vào biểu thức A ta được :
\(A=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...-\left(x+1\right)x+\left(x+1\right)\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-...-x^2-x+x+1\)
\(=1\)
\(A=x^9-2018x^8+2018x^7-2018x^6+2016x^5-2018x^4+2018x^3-2018x^2+2018x-2018\)
\(A=x^9-\left(2017+1\right)x^8+\left(2017+1\right)x^7-...+\left(2017+1\right)x-\left(2017+1\right)\)
\(A=x^9-\left(x+1\right)x^8+\left(x+1\right)x^7-...+\left(x+1\right)x-x-1\)
\(A=x^9-x^9-x^8+x^8+x^7-...+x^2+x-x-1\)
\(A=-1\)
pt \(\Leftrightarrow x^2+x-2019x-2019=0\)
\(\Leftrightarrow x\left(x+1\right)-2019\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2019\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2019\end{matrix}\right.\)
Vậy ...
Lời giải:
Vì \(a=2018x+2015; b=2018x+2013; c=2019x+2019\)
\(\Rightarrow a-b=2; b-c=-x-6; c-a=x+4\)
Ta có:
\(a^2+b^2+c^2-ab-bc-ac=\frac{2a^2+2b^2+2c^2-2ab-2bc-2ac}{2}\)
\(=\frac{(a-b)^2+(b-c)^2+(c-a)^2}{2}=\frac{2^2+(-x-6)^2+(x+4)^2}{2}\)
\(=\frac{2x^2+20x+56}{2}=x^2+10x+28\)
\(x^2+2017x\le2018x+2019\)
\(\Rightarrow x^2-x-2019\le0\)
Ta có: \(VT=x^2-x-2019=x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-2019\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{8077}{4}\)
\(=\left(x-\frac{1}{2}-\sqrt{\frac{8077}{4}}\right)\left(x-\frac{1}{2}+\sqrt{\frac{8077}{4}}\right)\le0\)
\(\Rightarrow\frac{1}{2}-\sqrt{\frac{8077}{4}}\le x\le\frac{1}{2}+\sqrt{\frac{8077}{4}}\)
Do x nguyên nên \(-44\le x\le45\)
Auto làm nốt
a) \(x^4+2019x^2+2018x+2019\)
\(=\left(x^4-x\right)+\left(2019x^2+2019x+2019\right)\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)+2019\right]\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)
b) \(E=2x^2-8x+1=2x^2-8x+8-7\)
\(=2\left(x^2-4x+4\right)-7=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\Rightarrow E\ge-7\)
Dấu "=" xảy ra <=> \(2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy MinE = -7 <=> x = 2
b) \(E=2x^2-8x+1\)
\(E=2\left(x^2-4x+\frac{1}{2}\right)\)
\(E=2\left(x^2-2\cdot x\cdot2+2^2+\frac{7}{2}\right)\)
\(E=2\left[\left(x-2\right)^2+\frac{7}{2}\right]\)
\(E=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
\(B=x^{2020}-2018x^{2019}-2018x^{2018}-...-2018x+1\)
\(=x^{2020}-2019x^{2019}+x^{2019}-2019x^{2018}+x^{2018}-2019x^{2017}+...+x^2-2019x+x+1\)
\(=x^{2019}\left(x-2019\right)+x^{2018}\left(x-2019\right)+x^{2017}\left(x-2019\right)+...+x\left(x-2019\right)+x+1\)Thay \(x=2019\) vào B ta có:
\(B=2019^{2019}\left(2019-2019\right)+2019^{2018}\left(2019-2019\right)+2019^{2017}\left(2019-2019\right)+...+2019\left(2019-2019\right)+2019+1\)
\(=2019+1=2020\)