K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

\(y\left(y-5\right)\left(y-10\right)\left(y-15\right)< 0\)y(y-5)(y-10)(y-15)<0

\(\left(y^2-15y\right)\left(y^2-15y+50\right)< 0\)(y^2-15y)(y^2-15y+50)

\(\left(z\right)\left(z+50\right)< 0\)

\(-50< z< 0\Rightarrow\hept{\begin{cases}y^2-15y< 0\Rightarrow0< y< 15\\y^2-15>-50dungvoi.\forall y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y>0\\y< 15\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-5>0\Leftrightarrow\orbr{\begin{cases}x>5\\x< -5\end{cases}}\\x^2-5< 15\Rightarrow-10< x< 10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-5>0\Rightarrow x< -5hoac.x>5\\x^2-5< 10\Rightarrow-10< x< 10\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}-10< x< -5\\5< x< 10\end{cases}}\)

2 tháng 1 2017

Để đẳng thức trên xảy ra thì phải có ít nhất 1 số âm hoặc 3 số âm

TH1:có 1 số âm

=>x2-20 < 0 <x2-15

=>15 < x2 <20

=> x2=16 

=> x = +-4

TH2:có 3 số âm

=> x2-10 < 0 <x2-5

=> 5 < x2 <10

=> x=9

=>x=+-3. Vậy x=3;x=-3;x=4hoặc x=-4

Chắc lun đó bạn ạ.Chúc bạn học giỏi nha!

3 tháng 4 2018

Lại là 1 bạn cùng quê hương >.<

H t bận lắm gần đi học rồi hướng dẫn cách làm thôi nha

\(x^2-20< x^2-15< x^2-10< x^2-5\)

Để tích trên lẻ thì có 1 số lẻ các thừa số là âm

\(\Rightarrow\)có 1 số hoặc 3 số là âm

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-20< 0\\x^2-15>0\\x^2-10>0\\x^2-5>0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-20< 0\\x^2-15< 0\\x^2-10< 0\\x^2-5>0\end{matrix}\right.\end{matrix}\right.\)

Giải ra nhé :))

3 tháng 4 2018

cảm ơn bạn nhé

sao lại cùng quê hương

26 tháng 9 2021

Để \(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\)

Thì phải có một sốâm và 3 số dương hoặc 1 số dương và 3 số âm

Mà \(x^2\ge0\forall x\)

\(\Rightarrow x^2-20< x^2-15< x^2-10< x^2-5\)

+ Với TH có 1 số âm và 3 số dương:

\(\Rightarrow\left\{{}\begin{matrix}x^2-20< 0\\x^2-15>0\end{matrix}\right.\)\(\Leftrightarrow15< x^2< 20\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)

+ Với TH có 1 số dương và 3 số âm:

\(\Rightarrow\left\{{}\begin{matrix}x^2-10< 0\\x^2-5>0\end{matrix}\right.\)\(\Leftrightarrow5< x^2< 10\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)

Vậy \(S=\left\{\pm3;\pm4\right\}\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Vì bài dài nên mình sẽ tách ra nhé.

1a. Ta có:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$

$=-3(-z)(-x)(-y)=3xyz$

$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$

------------------------

$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$

$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$

$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$

$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$

$=-z^5+5xyz^3-5x^2y^2z$

$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$

$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$

Từ $(1);(2)$ ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

1b.

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$

$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$

$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$

Do đó:

$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$

$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$

$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$

$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$

$=7xyz(x^2y^2-2xyz^2+z^4)$

$=7xyz(xy-z^2)$

$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$

$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$

$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)

 

 

29 tháng 3 2019

\(\left|x+5\right|\le2\Rightarrow-2\le x+5\le2\)

\(\Rightarrow x+5\in\left\{-2;-1;0;1;2\right\}\)

\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)

29 tháng 3 2019

\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)

Xét 2 trường hợp:

TH1:Trong 4 số có 3 số âm 1 số dương.

Theo bài ra,ta có:\(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}}\Rightarrow\hept{\begin{cases}x^2>5\\x^2>10\end{cases}\Rightarrow}5< x^2< 10\Rightarrow x=3\left(h\right)x=-3\)

TH2:Trong 4 số có 3 số dương,1 số âm.

Theo bài ra,ta có:\(\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 20\\x^2>15\end{cases}}\Rightarrow15< x^2< 20\Rightarrow x=4\left(h\right)x=-4\)

Vậy \(x\in\left\{3;-3;4;-4\right\}\)