Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: vì tích 4 số : (x2-1);(x2-4);(x2-7);(x2-10) âm nên phải có 1 số âm hoặc 3 số ấm
ta có : x2-1>x2-4>x2-7>x2-10
TH1: 1 số âm :x2-10<x2-7
=>7<x2<10
=> x2=9=> x=\(\pm\)3
TH2: 3 số âm và 1 số dương
x2-4<x2-1
=> 1<x2<4 (không tồn tại số nào )
vậy x=3 hoặc x=-3
câu 1: hình như đề sai. phải nhân thêm (x2-7) nữa
Câu 2: GTNN của B=|x-a|+|x-b| với a<b
ta có Min B=b-a
A= (|x-a|+|x-d|)+(|x-c|+|x-b|)
=> Min A=d-a+c-b khi a<b<c<d
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
Ta thấy \(\left(x+y-z\right)^2\ge0\); \(\left(x-y+2\right)^2\ge0\);\(\left(x+4\right)^2\ge0\)với mọi x,y,z
Suy ra \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2\ge0\)với mọi x,y,z
Mặt khác \(\left(x+y-z\right)^2+\left(x-y+2\right)^2+\left(x+4\right)^2=0\)
Nên \(\hept{\begin{cases}x+y-z=0\\x-y+2=0\\x+4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=z\\x+2=y\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}x+y=z\\y=-2\\x=-4\end{cases}\Rightarrow}\hept{\begin{cases}z=-6\\y=-2\\x=-4\end{cases}}}\)
Vậy.....
B1: a, |2 - x| + 2 = x
=> |2 - x| = x - 2
Dễ thấy (2 - x) và số đối của (x - 2)
=> |2 - x| = x - 2
=> 2 - x ≤ 0
=> x ≥ 2
b, Điều kiện: x + 7 ≥ 0 => x ≥ -7
Ta có: |x - 9| = x + 7
\(\Rightarrow\orbr{\begin{cases}x-9=x+7\\x-9=-x-7\end{cases}\Rightarrow}\orbr{\begin{cases}0x=16\left(loai\right)\\2x=2\end{cases}\Rightarrow x=1}\left(t/m\right)\)
Bài 1 : Tính nhanh
a) 16.(38−2)−38(16−1)16.(38−2)−38(16−1)
b) (−41).(59+2)+59(41−2)(−41).(59+2)+59(41−2)
Bài 2 :
Tìm các số x ; y ; x biết rằng :
x + y = 2 ; y + z = 3 ; z + x = -5
Bài 3 : Tìm x ; y ∈∈ Z biết rằng :
( y + 1 ) . xy - 1 ) = 3
Lời giải:
1. Ta thấy:
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$
Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$
$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$
2.
Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>