giúp mình câu b và c ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Khi x=3 thì \(A=\dfrac{3\cdot3}{3-2}=9\)
b: C=A+B
\(=\dfrac{3x}{x-2}-\dfrac{6}{x-2}-\dfrac{x^2+4x+4}{x^2-4}\)
\(=\dfrac{3x-6}{x-2}-\dfrac{x+2}{x-2}\)
\(=\dfrac{3x-6-x-2}{x-2}=\dfrac{2x-8}{x-2}\)
c: Để C nguyên thì 2x-4-4 chia hết cho x-2
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6\right\}\)
\(a,C=\dfrac{81-1}{4\cdot9}=\dfrac{80}{36}=\dfrac{20}{9}\\ b,D=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ D=\dfrac{2x+2\sqrt{x}+1}{x-1}\\ c,CD=\dfrac{x-1}{4\sqrt{x}}\cdot\dfrac{2x+2\sqrt{x}+1}{x-1}=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}=\dfrac{13}{8}\\ \Leftrightarrow52\sqrt{x}=16x+16\sqrt{x}+8\\ \Leftrightarrow16x-36\sqrt{x}+8=0\\ \Leftrightarrow4x-9\sqrt{x}+2=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{16}\left(tm\right)\end{matrix}\right.\)
\(d,N=CD=\dfrac{2x+2\sqrt{x}+1}{4\sqrt{x}}=\dfrac{\sqrt{x}}{2}+\dfrac{1}{2}+\dfrac{1}{4\sqrt{x}}\\ \Leftrightarrow N\ge2\sqrt{\dfrac{\sqrt{x}}{2}\cdot\dfrac{1}{4\sqrt{x}}}+\dfrac{1}{2}=2\sqrt{\dfrac{1}{8}}+\dfrac{1}{2}=\dfrac{\sqrt{2}+1}{2}\)
Dấu \("="\Leftrightarrow4x=2\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)
Vậy \(N_{min}=\dfrac{\sqrt{2}+1}{2}\)
a: \(=\dfrac{2x+x-2-x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)
b: x^2-x-6=0
=>(x-3)(x+2)=0
=>x=3(nhận) hoặc x=-2(loại)
Khi x=3 thì \(E=\dfrac{2}{3+2}=\dfrac{2}{5}\)
c: Để E nguyên thì \(x+2\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{-1;-3;0;-4\right\}\)
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$