K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

Đáp án D

Một vật phẳng mỏng đồng chất có dạng là một tam giác đều. Trọng tâm của vật đó nằm tại giao điểm của 3 đường trung tuyến (trong tam giác đều các đường trung tuyến, đường cao, đường phân giác, đường trung trực trùng nhau)→ D là phát biểu sai

Mỗi câu sau đây đúng hay sai?a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếpb) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếpc) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấyd) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.e) Giao điểm...
Đọc tiếp

Mỗi câu sau đây đúng hay sai?

a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy

d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.

e) Giao điểm ba đường phân giác trong của một tam giác là tâm đường tròn nội tiếp tam giác ấy.

f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy.

g) Tứ giác có tổng độ dài các cặp cạnh đối nhau bằng nhau thì ngoại tiếp được đường tròn

h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn.

i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.

1
28 tháng 6 2017

Câu a: Đúng     Câu b: Sai     Câu c: Sai

Câu d: Đúng     Câu e: Đúng     Câu f: Sai

Câu g: Đúng     Câu h: Đúng     Câu i: Sai

Mỗi câu sau đây đúng hay sai ? a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy e) Giao...
Đọc tiếp

Mỗi câu sau đây đúng hay sai ?

a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy

d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy

e) Giao điểm ba đường phân giác của một tam giác là tâm đường tròn nội tiếp tam giác ấy

f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy

g) Tứ giác có tổng độ dài các cặp cạnh đối bằng nhau thì ngoại tiếp được đường tròn

h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn

i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó

1
8 tháng 6 2017

Các câu đúng : a, d, e, g, h

Các câu sai : b, c, f, i

9 tháng 3 2022

A

9 tháng 3 2022

A

17 tháng 1 2018

Chọn C

26 tháng 7 2018

a. Đúng

b. Đúng

c. Sai

d. Đúng

Chọn A

12 tháng 3 2023

giao điểm của 3 đường phân giác trong của một tam giác

A,cách đều 3 cạnh của tam giác đó

B,là điểm luôn thuộc một cạch của tam giác đó

C,cách đều 3 đỉnh của tam giác đó

D,là trọng tâm của tam giác đó

13 tháng 9 2019

c) Ta có EF là đường trung trực của PM EP = EM ∆ EPM cân tại E

Mặt khác EPM = ACM = 60o (do AMPC là tứ giác nội tiếp) nên ∆ EPM đều

PE = PM . Tương tự PF = PM

Ta có CM // DB nên PCM = PBD

Mà BMPD là tứ giác nội tiếp nên  PBD = PMD. Suy ra PCM = PMD

Ta lại có CPM = DPM = 120o ⇒ Δ C P M ~ Δ M P D ( g . g ) ⇒ C P M P = P M P D ⇒ C P P F = P E P D

Theo định lý Talét đảo ta có CE // DF CDFE là hình thang.

Đề bài: Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.a) Tính tỷ số diện tích của 2 tam giác MPQ và RPQ.b) Tính tỷ số diện tích của 2 tam giác MNP và RNQ.c) So sánh các diện tích của 2 tam giác RPQ và RNQ.Từ các kết quả trên hãy chứng minh tam giác QMN, QNP, QPM có cùng diện tích.Bài giải:a) Hai tam giác PMQ và PQR có:Chung đỉnh P.Hai cạnh MQ và RQ cùng năm trên một đường thẳng nên chúng có...
Đọc tiếp

Đề bài: Cho tam giác MNP với đường trung tuyến MR và trọng tâm Q.

a) Tính tỷ số diện tích của 2 tam giác MPQ và RPQ.

b) Tính tỷ số diện tích của 2 tam giác MNP và RNQ.

c) So sánh các diện tích của 2 tam giác RPQ và RNQ.

Từ các kết quả trên hãy chứng minh tam giác QMN, QNP, QPM có cùng diện tích.

Bài giải:

a) Hai tam giác PMQ và PQR có:

  • Chung đỉnh P.
  • Hai cạnh MQ và RQ cùng năm trên một đường thẳng nên chúng có chung chiều cao xuất phát từ P.

Mặt khác do Q là trọng tâm của tam giác MNP suy ra MQ = 2RQ.

Từ đó suy ra: b) Tương tự câu a.

c) Hai tam giác RPQ và RNQ có chung đỉnh Q, hai cạnh NR và RP cùng nằm trên một đường thẳng nên chúng có chung đường cao từ Q. RN = RP do đó:

 

Bài tập 68 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho góc xOy, hai điểm A,B lần lượt nằm trên Ox và Oy.

a) Hãy tìm điểm M cách đều hai cạnh của góc xOy và cách đều hai điểm A,B.

b) Nếu OA = OB thì có bao nhiêu điểm M thoả mãn yêu cầu ở câu a?

Bài giải:

a) Điểm M cách đều hai cạnh của góc xOy suy ra M nằm trên đường phân giác của góc đó.

Điểm M cách đều A và B suy ra M nằm trên đường trung trực của AB.

Vậy ta xác định được M chính là giao điểm của hai đường thẳng trên.

b) Nếu OA = OB thì đường trung trực của AB chính là phân giác góc xOy do khi đó tam giác OAB cân tại O, đường phân giác đồng thời là đường trung trực của cạnh AB.

Khi đó thì có vô số điểm M thoả mãn, tập hợp điểm M thoả mãn yêu cầu chính là đường phân giác của góc xOy.

Bài tập 69 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho hai đường thẳng phân biệt không song song, không vuông góc với nhau là a và b, điểm M không nằm trên hai đường này. Qua M lần lượt vẽ đường thẳng c vuông góc với a tại P, cắt b tại Q và vẽ đường thẳng d vuông góc với b tại R, cắt a tại S.

Chứng minh rằng đường thẳng qua M vuông góc với SQ cũng đi qua giao điểm của a và b.

Bài giải: Vì a và b không song song nên chúng cắt nhau giả sử tại A.

Xét tam giác AQS có: QP ⊥ AS vì QP ⊥ a.

SR ⊥ AQ vì SR ⊥ b.

Ta có QP và RS cắt nhau tại M.

Vậy M là trực tâm của ΔAQS.

=> Đường thẳng đi qua M và vuông góc với QS tại H sẽ là đường cao thứ ba của ΔAQS.

Vậy MH phải đi qua đỉnh A của ΔAQS hay đường thẳng vuông góc với QS đi qua giao điểm của a và b (Điều phải chứng minh).

Bài tập 70 (trang 88) – SGK Toán 7 tập 2.

Đề bài: Cho A, B là hai điểm phân biệt và d là đường trung trực của đoạn thẳng AB.

a) Ta ký hiệu PA là nửa mặt phẳng bờ là đường thẳng d có chứa điểm A (không kể d). Gọi N là một điểm của PA và M là giao điểm của đường thẳng NB và d. Hãy so sánh NB với NM + MA. Từ đó suy ra NA < NB.

b) Ta ký hiệu PB là nửa mặt phẳng bờ d có chứa B (không kể d). Gọi N’ là một điểm của PB. Chứng minh rằng N’B < N’A.

c) Gọi L là một điểm sao cho LA < LB. Hỏi điểm L nằm ở đâu?

Bài giải: a) Ta có M nằm trên đường trung trực của AB nên MA = MB.

N, M, B thẳng hàng nên NB = NM + MB

Mà MA = MB suy ra NB = NM + MA.

Xét tam giác NMA ta có: NM + MA > NA => NB > NA.

b) Tương tự câu a.

c) L phải nằm ở PA

0