Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Trung điểm của một đoạn thẳng là tâm đối xứng của đoạn thẳng đó. (đúng)
b. Giao điểm hai đường chéo của một hình bình hành là tâm đối xứng của hình bình hành đó. (đúng)
c. Trọng tâm của một tam giác là tâm đối xứng của tam giác đó. (sai)
d. Tâm của một đường tròn là tâm đối xứng của đường tròn đó. (đúng)
Tham khảo!
a) Đúng, vì nếu lấy một điểm O bất kì trên đường thẳng thì nó chia đường thẳng đó thành hai và với bất kì một điểm M, trên tia này cũng luôn có một điểm M' đối xứng với nó qua O trên tia kia.
b) Sai,
Giả sử tam giác ABC có trọng tâm G.
Khi đó điểm A’ đối xứng với A qua G không nằm trong tam giác.
c) Đúng, vì hai tam giác đối xứng với nhau qua một điểm thì chúng bằng nhau.
Do đó chu vi của chúng bằng nhau.
=> A, Đúng; B, Sai; C. Đúng
a) Đúng, vì nếu lấy một điểm O bất kì trên đường thẳng thì nó chia đường thẳng đó thành hai và với bất kì một điểm M, trên tia này cũng luôn có một điểm M' đối xứng với nó qua O trên tia kia.
b) Sai,
Giả sử tam giác ABC có trọng tâm G.
Khi đó điểm A’ đối xứng với A qua G không nằm trong tam giác.
c) Đúng, vì hai tam giác đối xứng với nhau qua một điểm thì chúng bằng nhau.
Do đó chu vi của chúng bằng nhau.
Bài giải:
a) Đúng, vì nếu lấy một điểm O bất kì trên đường thẳng thì nó chia đường thẳng đó thành hai tia và với bất kì một điểm M, trên tia này cũng luôn có một điểm M' đối xứng với nó qua O trên tia kia.
b) Sai, vì nếu lấy điểm đối xứng của đình A của tam giác qua trọng tâm thì điểm đối xứng này không nằm trên tam giác.
c) Đúng, vì hai tam giác đối xứng với nhau qua một điểm thì chúng bằng nhau. (Hai tam giác bằng nhau có chu vi bằng nhau).
Khẳng định nào sau đây là sai?
A.Giao điểm của hai đường chéo là tâm đối xứng của hình thoi
B.Hình thoi có những cặp cạnh liên tiếp bằng nhau
C.Hai đường chéo là hai trục đối xứng của hình thoi
D.Hình bình hành luôn là hình thoi(hình thôi 4 cạnh bằng nhau, còn hình bình hành thì ko)
a)
Giả sử ABCD là hình chữ nhật. Gọi O là giao điểm của AC và BD.
Theo tính chất đường chéo của hình chữ nhật ta có; hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.
Vậy: OA = OC và OB= OD
Do đó, O là tâm đối xứng của hình chữ nhật đó.
b)
Áp dung tính chất: Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.
ABCD là hình chữ nhật
⇒ ABCD là hình thang cân (hai đáy AB và CD)
⇒ Đường thẳng đi qua trung điểm AB và CD là trục đối xứng ABCD.
Tương tự vậy: ABCD cũng là hình thang cân với hai đáy AD và BC
⇒ Đường thẳng đi qua trung điểm AD và BC là trục đối xứng của ABCD.
Vậy ta có điều phải chứng minh.
a. Đúng
b. Đúng
c. Sai
d. Đúng