Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) XÉT \(\Delta BAD\)VÀ \(\Delta MAD\)CÓ
\(\widehat{ABD}=\widehat{AMD}=90^o\)
\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
AD LÀ CẠNH CHUNG
=>\(\Delta BAD\)=\(\Delta MAD\)( CH-GN)
B) VÌ \(\Delta BAD\)=\(\Delta MAD\)(CMT)
\(\Rightarrow BA=MA\)HAI CẠNH TƯƠNG ỨNG
\(\Rightarrow\Delta ABM\) CÂN TẠI A
MÀ \(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)
=> AI LÀ PHÂN GIÁC CỦA \(\widehat{BAM}\)
MÀ TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG TRUNG TRỰC
=> AI LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐỌAN BM
MÀ I NẰM TRÊN ĐỌAN AD
=> AD LÀ ĐƯỜNG TRUNG TRỰC CỦA ĐỌAN BM
C)
chứng minh DH=DB=DM
sao đó là mà D là điểm nằm trog tam giác acn
=> d cách đều các cạnh tam giác acn
Bạn biết rằng đường trung tuyến của tam giác đều cũng là đường phân giác của tam giác
Mà <A = <B = <C ( dấu góc đó nhe bạn, mình k bik bấm dấu góc ở đâu hết :) )
=> <A / 2 = <B / 2 = <C / 2
=> <A1 = <A2 = <B1 = <B2 = <C1 = <C2
Xét tam giác AHC có: <A1 = <C1 => tam giác AHC là tam giác cân tại H => AH = HC (1)
Xét tam giác HCB có: <C1 = <B2 => tam giác BHC là tam giác cân tại H => HC = HB (2)
Xét tam giác BHA có: <B2 = <A2 => tam giác BHA là tam giác cân tại H => HB = HA (3)
Từ (1), (2), (3) => HA = HB = HC => điều phải chứng minh
Chọn A
giao điểm của 3 đường phân giác trong của một tam giác
A,cách đều 3 cạnh của tam giác đó
B,là điểm luôn thuộc một cạch của tam giác đó
C,cách đều 3 đỉnh của tam giác đó
D,là trọng tâm của tam giác đó