Cho \(\frac{a+b}{a-3}=\frac{b+4}{b-4}.\)Tính giá trị của \(A=\frac{a^3+3^3}{b^3+4^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x=\sqrt[3]{\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}}+\sqrt[3]{\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}}\)
=> \(x^3=\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}+\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}+3\cdot\sqrt[3]{\left(\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right)\left(\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right)}\cdot x.\)
= \(-b+\sqrt[3]{\frac{b^2}{4}-\left(\frac{b^2}{4}+\frac{a^3}{27}\right)}\cdot x\)
=\(-b+\sqrt[3]{\frac{a^3}{27}}\cdot x=-b+\frac{a}{27}\cdot x\)
=> \(x^3+b=\frac{a}{27}\cdot x\)
Vậy \(x^3+ax+b=\frac{a}{27}\cdot x+ax=\frac{28a}{27}\cdot x\)
(a+1/b)2=16 <=> a2+2a/b+1/b2=16 <=> a2+1/b2=24 (1)
Từ giả thiết và (1) suy ra: (a+1/b)(a2+1/b2)= -96 rồi tính đc cái cần tính
Áp dụng dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=\frac{b+c-a}{4+11-3}=\frac{b+c-a}{12}=\frac{a+c-b}{3+11-4}=\frac{a+c-b}{10}\)
\(\Rightarrow\frac{b+c-a}{a+c-b}=\frac{12}{10}=\frac{6}{5}\)
mk làm kiểu khác
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}=k\)
\(\Rightarrow a=3k;b=4k;c=11k\)(1)
Thay (1) vào biểu thức A ta được:
\(\frac{4k+11k-3k}{3k+11k-4k}=\frac{12k}{10k}=\frac{6}{5}\)
Vậy..................
\(A=\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(3^2A=3^2\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-3^2\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(9A=\left(1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(3+\frac{1}{3}+...+\frac{1}{3^{97}}\right)\)
\(9A-A=\left(1-\frac{1}{3^{100}}\right)-\left(3-\frac{1}{3^{99}}\right)\)
\(8A=1-3=-2\)
A=\(\frac{-2}{8}=\frac{-1}{4}\)
\(B=4\left|\frac{-1}{4}\right|+\frac{1}{3^{100}}=1+\frac{1}{3^{100}}=1\)
Vậy B=1
\(\frac{a+3}{a-3}=\frac{b+4}{b-4}\)
=> \(\frac{a+3}{b+4}=\frac{a-3}{b-4}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a+3}{b+4}=\frac{a-3}{b-4}=\frac{a+3+a-3}{b+4+b-4}=\frac{2a}{2b}=\frac{a}{b}\)
=> \(\frac{a}{b}=\frac{a+3}{b+4}=\frac{a+3-a}{b+4-b}=\frac{3}{4}\)
=> \(\frac{a^3}{b^3}=\frac{3^3}{4^3}=\frac{a^3+3^3}{b^3+4^3}\)
=> \(A=\frac{a^3+3^3}{b^3+4^3}=\frac{3^3}{4^3}\)