Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a/b + b/c = 1 <=> (ac+b2)/(bc) (1)
c/a=-1 <=> c= -a => -3abc = +3c2b2 = 3(bc)2(2)
Ta có :
M = [(ac)3+(b2)3]/(bc) 3
<=> [(ac+b2)((ac)2-acb2+(b2)2]/(bc)3
<=> [( ac+b2)((ac) 2+2acb2+(b2)2 -3acb2]/(bc)3
<=> [(ac+b2)*((ac+b2)-3acb2)]/(bc)3
<=> [(ac+b2)/bc)] *[ (ac+b2)-3acb2)]/(bc)2
Từ( 1),(2) thay vào bt trên ta có
<=>1*[ (ac+b2)+3(cb)2]/(bc)2]
<=> 3+ [(ac+b) 2/(bc) 2]
<=> 3+[(ac+b )/(bc )] 2
<=> 3+12=4
Vậy M =4
Ta có: \(a-b=3\)
\(\Leftrightarrow a^2-2ab+b^2=9\)
\(\Leftrightarrow a^2+b^2-6=9\)
\(\Leftrightarrow a^2+b^2=15\)
\(M=a^4-a^3b-ab^3+b^4\)
\(=a^3\left(a-b\right)-b^3\left(a-b\right)\)
\(=\left(a-b\right)\left(a^3-b^3\right)\)
\(=\left(a-b\right)^2\left(a^2+ab+b^2\right)\)
\(=3^2\left(15+3\right)=162\)
2) Ta có : \(\left|x-1\right|+\left|1-x\right|=2\) (1)
Xét 3 trường hợp :
1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)
2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)
3. Với x = 1 , phương trình vô nghiệm.
Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)
1) Cách 1:
Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)
Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)
\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)
Vậy Min A = 9 <=> a = b = c
Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)
a, Ở phân số tử là a đầu tiên, thì nhân cả tử và mẫu cho c. Ở phân số thứ 2 có tử là b, nhân với ac, còn phân số còn lại giữ nguyên. Thì bạn sẽ có 3 phân số cùng mẫu nhé :3 Xong công vào ra 1 ^^
b, Viết bình phương (x+y+z)^2= bla blo :v Xong thay giữ kiện xy +yz+zx = 1 vào là done. Xong để có 10x^2+10y^2+z^2 thì dễ rồi nhé ^^
a. Câu hỏi của Nguyễn Văn An - Toán lớp 8 - Học toán với OnlineMath
\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=1.\left(3-ab\right)\)
ta có: \(\left(a+b\right)^2=1\Leftrightarrow a^2+2ab+b^2=1\Leftrightarrow3+2ab+1=0\Leftrightarrow ab=-1\)
=> \(A=3-\left(-1\right)=4\)
(a+1/b)2=16 <=> a2+2a/b+1/b2=16 <=> a2+1/b2=24 (1)
Từ giả thiết và (1) suy ra: (a+1/b)(a2+1/b2)= -96 rồi tính đc cái cần tính