Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=> x3 = -b/2 + -b/2 + 3x.\(\sqrt[3]{\left(\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right).\left(\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right)}\)
<=> x³ = -b + 3x.\(\sqrt[3]{\left(\frac{-b}{2}\right)^2-\frac{b^2}{4}-\frac{a^3}{27}}\)
<=> x³ = -b + 3x.\(\sqrt[3]{\frac{-a^3}{27}}\)
<=> x³ = -b + 3x\(\frac{-a}{3}\)
<=> x³ = -b - ax
=> Q = -b - ax + ax + b = 0
\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)
\(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)
\(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)
\(=-3\)
\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b, Ta có \(B< A\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)
\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)
\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)
Vậy ...
1,
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)
\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)
\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)
\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)
Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)
2,
a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)
b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)
\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)
c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)
Bài 1:
a, \(4\sqrt{3+2\sqrt{2}}-\sqrt{57+40\sqrt{2}}\)
\(=4\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(4\sqrt{2}+5\right)^2}\)
\(=4\left(\sqrt{2}+1\right)-4\sqrt{2}-5\)
\(=4\sqrt{2}+4-4\sqrt{2}-5=-1\)
b, \(B=\sqrt{1100}-7\sqrt{44}+2\sqrt{176}-\sqrt{1331}\)
\(=10\sqrt{11}-14\sqrt{11}+8\sqrt{11}-11\sqrt{11}=-7\sqrt{11}\)
c, \(C=\sqrt{\left(1-\sqrt{2002}\right)^2}.\sqrt{2003+2\sqrt{2002}}\)
\(=\left(1-\sqrt{2002}\right).\sqrt{\left(\sqrt{2002}+1\right)^2}\)
\(=\left(1-\sqrt{2002}\right).\left(\sqrt{2002}+1\right)=-2001\)
Câu d bạn kiểm tra lại đề bài nhé.
Bài 2:
\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)
a, ĐK: \(x\ge0,x\ne1\)
b, ĐK: \(x\ge0,x\ne1\)
\(A=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}+\frac{\sqrt{x}}{1-x}\)
\(=\frac{1}{2\sqrt{x}-2}-\frac{1}{2\sqrt{2}+2}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{1}{2\left(\sqrt{x}-1\right)}-\frac{1}{2\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{2\sqrt{x}+2-2\sqrt{x}+2}{4\left(x-1\right)}-\frac{\sqrt{x}}{x-1}\)
\(=\frac{4-4\sqrt{x}}{4\left(x-1\right)}=\frac{4\left(1-\sqrt{x}\right)}{4\left(1-x\right)}=\frac{1-\sqrt{x}}{1-x}\)
Thay \(x=3\left(TM\right)\)vào A ta có: \(A=\frac{1-\sqrt{3}}{3-1}=\frac{1-\sqrt{3}}{2}\)
Vậy với \(x=3\)thì \(A=\frac{1-\sqrt{3}}{2}\)
c, \(\left|A\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}A=\frac{1}{2}\\A=-\frac{1}{2}\end{cases}}\)
TH1: \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=\frac{1}{2}\Leftrightarrow2-2\sqrt{x}=x-1\)\(\Leftrightarrow x-1-2+2\sqrt{x}=0\)\(\Leftrightarrow x+2\sqrt{x}-3=0\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\\sqrt{x}=-3\left(L\right)\end{cases}}}\)
TH2: \(A=-\frac{1}{2}\Leftrightarrow\frac{1-\sqrt{x}}{x-1}=-\frac{1}{2}\)\(\Leftrightarrow2-2\sqrt{x}=1-x\Leftrightarrow-x+1-2+2\sqrt{x}=0\)\(\Leftrightarrow-x-1+2\sqrt{x}=0\Leftrightarrow x-2\sqrt{x}+1=0\)\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=0\Leftrightarrow\sqrt{x}=-1\left(L\right)\)
Vậy với \(x=1\)thì \(\left|A\right|=\frac{1}{2}\)
1) Bạn đánh nhầm \(\sqrt{x}+3\rightarrow\sqrt{x+3}\); \(\sqrt{x}-3\rightarrow\sqrt{x-3}\)
Sửa : \(ĐKXĐ:x\ne\pm\sqrt{3}\)
a) \(M=\frac{x-\sqrt{x}}{x-9}+\frac{1}{\sqrt{x}+3}-\frac{1}{\sqrt{x}-3}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}+\sqrt{x}-3-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow M=\frac{x-\sqrt{x}-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow M=\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
b) Để \(M=\frac{3}{4}\)
\(\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3}{4}\)
\(\Leftrightarrow4\sqrt{x}+8=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)(tm)
Vậy để \(A=\frac{3}{4}\Leftrightarrow x=1\)
c) Khi x = 4
\(\Leftrightarrow M=\frac{\sqrt{4}+2}{\sqrt{4}+3}\)
\(\Leftrightarrow M=\frac{2+2}{2+3}\)
\(\Leftrightarrow M=\frac{4}{5}\)
Vậy khi \(x=4\Leftrightarrow M=\frac{4}{5}\)
Ta có: \(x=\sqrt[3]{\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}}+\sqrt[3]{\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}}\)
=> \(x^3=\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}+\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}+3\cdot\sqrt[3]{\left(\frac{-b}{2}+\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right)\left(\frac{-b}{2}-\sqrt{\frac{b^2}{4}+\frac{a^3}{27}}\right)}\cdot x.\)
= \(-b+\sqrt[3]{\frac{b^2}{4}-\left(\frac{b^2}{4}+\frac{a^3}{27}\right)}\cdot x\)
=\(-b+\sqrt[3]{\frac{a^3}{27}}\cdot x=-b+\frac{a}{27}\cdot x\)
=> \(x^3+b=\frac{a}{27}\cdot x\)
Vậy \(x^3+ax+b=\frac{a}{27}\cdot x+ax=\frac{28a}{27}\cdot x\)