Tìm GTTN của bt sau
/x+-1/-1/2
7+/2x+3/
-3/×+1+1
/x+2/+/x-3/+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(C=\frac{1}{\left|x-2\right|+3}\)
\(C\le\frac{1}{3}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy....
Bài 2 :
a) \(\left(\frac{1}{2}\right)^{3x-1}=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^{3x-1}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow3x-1=5\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
b) \(2\cdot3^{x-405}=3^{x-1}\)
\(2=3^{x-1}:3^{x-405}\)
\(2=3^{x-1-x+405}\)
\(2=3^{404}\)( vô lí )
=> x thuộc rỗng
c) \(\frac{1}{81}\cdot27^{2x}=\left(-9\right)^4\)
\(\frac{27^{2x}}{81}=9^4\)
\(\frac{\left(3^3\right)^{2x}}{3^4}=\left(3^2\right)^4\)
\(\frac{3^{6x}}{3^4}=3^8\)
\(3^{6x-4}=3^8\)
\(\Rightarrow6x-4=8\)
\(\Rightarrow6x=12\)
\(\Rightarrow x=2\)
d) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
\(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
\(\left(4x-1\right)^{20}\cdot\left[\left(4x-1\right)^{10}-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-1=\left\{\pm1\right\}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\left\{\frac{1}{2};0\right\}\end{cases}}\)
1: =>5(2x+6)=40
=>2x+6=8
=>2x=2
=>x=1
2: =>12-(x+3)=256:64=4
=>(x+3)=8
=>x=5
3: =>2x-1=3 hoặc 2x-1=-3
=>x=2 hoặc x=-1
4: \(\Leftrightarrow3^{x+2017}=3^{2015}\)
=>x+2017=2015
=>x=-2
a) Ta có : \(x^2+x+\frac{2}{3}\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{5}{12}\)
\(=\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{5}{12}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\)
Mà ; \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{5}{12}\ge\frac{5}{12}\forall x\)
Vậy GTNN của biểu thức là : \(\frac{5}{12}\) khi \(x=-\frac{1}{2}\)
a/x^4 lớn hơn hoặc = 0
x^2 lớn hơn hoặc = 0
2 > 0
=> x^4+x^2+2 >0 => bieu thức luôn dương
b/ (x+3)(x-11)+2003 <=> x^2 -8x -33 +2003 <=> x^2 -8x +1970 <=> x^2-8x+16+1954 <=> (x-4)^2+1954
ta có : (x-4)^2 lớn hơn hoặc = 0
1954 >0
=> (x-4)^2+1954>0 => bt luôn dương
Bài 1 trước nha . chúc bạn học tốt . Ủng hộ nha
\(=>-9\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=>-9\left(x^2-2.\frac{2}{3}x+\frac{4}{9}+\frac{11}{9}\right)=>-9\left(x-\frac{2}{3}\right)^2-11\)
Ta có \(\left(x-\frac{2}{3}\right)^2\ge0=>-9\left(x-\frac{2}{3}\right)^2\le0,-11< 0\)
\(-9\left(x-\frac{2}{3}\right)^2-11\le0\)=> bt luôn âm
1) \(3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)^2-\left(5-16x\right)\)
\(=3\left(x^2-2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-\left(5-16x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2-12x-9-5+16x\)
\(=-30\)
bạn ơi phần a là gì ạ + hay - 1 thế
b) Đặt \(B=7+|2x+3|\)
Vì\(|2x+3|\ge0;\forall x\)
\(\Rightarrow7+|2x+3|\ge7+0;\forall x\)
Hay\(B\ge7;\forall x\)
Dấu "=" xảy ra\(\Leftrightarrow|2x+3|=0\)
\(\Leftrightarrow x=-\frac{3}{2}\)
Vậy MIN B=7\(\Leftrightarrow x=-\frac{3}{2}\)