K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có

góc OAB=góc OCD
=>ΔOAB đồng dạng với ΔOCD

b: Xét ΔABD vuông tại A và ΔDAC vuông tại D có 

góc ABD=góc DAC

=>ΔABD đồng dạng với ΔDAC

26 tháng 9 2019

A B C D E

a ) Kẻ BE vuông góc với BD 

Xét  tứ giác  ABED có \(\widehat{DAB}=\widehat{ADE}=\widehat{DEB}=90^o\)

\(\Rightarrow\) ABED là hình vuông 

 \(\Rightarrow AB=DE\left(1\right)\)

Ta có : CD = DE + EC =  2AB  ( 2 )

Từ ( 1 ) và ( 2) \(\Rightarrow DE=EC=AB\)

\(\Rightarrow\) BE là trung tuyến của tam giác BCD 

Xét tam giác BCD có BE vừa là đường cao vừa là trung tuyến 

\(\Rightarrow\) Tam giác BCD cân tại B 

b )  Ta có tứ giác ABED là hình vuông ( chứng minh trên )

     \(\Rightarrow\) BD là tia phân giác của \(\widehat{ADE}\) ( tính chất đường chéo của hình vuông )

\(\Rightarrow\) đpcm

Chúc bạn học tốt !!!

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có

góc C chung

Do đo: ΔBDC\(\sim\)ΔHBC

b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)

\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)

HD=10-3,6=6,4(cm)

21 tháng 4 2015

Câu C: Vẽ thêm đường cao AE (E thuộc DC). Vì ABCD là hình thang cân nên HC = DE = 9cm (tam giác AED = tam giác BHC bạn tự chứng minh nhé) suy ra AB = HE = 7cm. Dựa vào tam giác BDC đồng dạng với tam giác HBC tính đc HB = 12cm. Vậy diện tích hình thang ABCD là 192 cmnhé banj!

29 tháng 6 2020

bạn kia đúng rùi

12 tháng 4 2018

a)Xét tam giác BDC và tam giác HBC có :

\(\widehat{DBC}=\widehat{BHC}\left(=90^o\right)\)

Chung \(\widehat{BCD}\)

\(\Rightarrow\) Tam giác BDC đồng dạng với tam giác HBC ( g-g )

b) Do tam giác BDC đồng dạng với tam giác HBC

\(\Rightarrow\frac{DC}{BC}=\frac{BC}{HC}\)

\(\Leftrightarrow\frac{25}{15}=\frac{15}{HC}\)

\(\Leftrightarrow HC=9\left(cm\right)\)

Ta có : \(HD+HC=DC\)

\(\Leftrightarrow HD+9=25\)

\(\Leftrightarrow HD=16\left(cm\right)\)

17 tháng 4 2022

a. vì AB//CD => góc ABD=góc BDC

xét tam giác ADB và tam giác BCD có:

góc DAB=góc DBC (gt)

góc ABD= góc BDC (cmt)

=> tam giác ADB ~ tam giác BCD (c.c)

b. vì tam giác ADB ~ tam giác BCD 

=> \(\dfrac{AD}{BC}\)=\(\dfrac{AB}{BD}\)=\(\dfrac{DB}{CD}\)

=> BC= \(\dfrac{AD.BD}{AB}\)\(\dfrac{4.6}{3}\)= 8(cm)

=> CD=  \(\dfrac{BD^2}{AB}\)\(\dfrac{6^2}{3}\)= 12 (cm)

 

Sửa đề: Đường cao BH

a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔBDC\(\sim\)ΔHBC

b: Áp dụng định lí Pytago vào ΔBDC vuông tại B, ta được:

\(DC^2=BD^2+BC^2\)

\(\Leftrightarrow BD^2=25^2-15^2=400\)

hay BD=20(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có BH là đường cao ứng với cạnh huyền DC, ta được:

\(\left\{{}\begin{matrix}BD^2=HD\cdot DC\\BC^2=HC\cdot DC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}HD=16\left(cm\right)\\HC=9\left(cm\right)\end{matrix}\right.\)