K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔOAB vuông tại O và ΔOCD vuông tại O có

góc OAB=góc OCD
=>ΔOAB đồng dạng với ΔOCD

b: Xét ΔABD vuông tại A và ΔDAC vuông tại D có 

góc ABD=góc DAC

=>ΔABD đồng dạng với ΔDAC

2 tháng 8 2017
bạn ơi bạn làm đc bài này chưa cho mình lời giải với
19 tháng 6 2018

Chú ý :Δ là tam giác

a) Xét ΔAOD và ΔBAD có:

{Dˆ:chungAOˆD=DAˆB=90⇒ΔAOD≀ΔBAD(g.g)

b) Ta có: DAˆO=ABˆD=ABˆO(ΔAOD≀ΔBAD)

Và AOˆD=AOˆB=90 (2 đường chéo vuông góc tại O)

Do đó ΔAOD≀ΔBOA(g.g)

⇒ADAB=ODAO (1)

Lại có: {DAˆO:chungAOˆD=ADˆC=90⇒ΔADC≀ΔAOD(g.g)

⇒CDOD=ADAO⇔CDAD=ODAO (2)


 
Từ (1);(2)⇒ADAB=CDAD⇒AD2=AB⋅CD

c) Ta có: AB song song với DC (ABCD là hình thang)

⇒ABˆO=ODˆC(slt)

Và AOˆB=DOˆC(đ2)

Do đó ΔOCD≀ΔOAB(g.g)

⇒k=OCOA=CDAB=94

⇒SΔOCDSΔOAB=k2=942=8116

Vậy........................

Chúc bạn học tốt nhé !

a: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

b: \(BD=\sqrt{3^2+4^2}=5\left(cm\right)\)

ΔOAB đồng dạng với ΔOCD
=>OB/OD=AB/DC=1/2

=>OB/1=OD/2=5/3

=>OB=5/3cm; OD=10/3cm

 

a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có

BA/AD=AD/DC

=>ΔBAD đồng dạng với ΔADC

b: ΔBAD đồng dạng với ΔADC

=>góc BDA=góc ACD

Xét ΔOAD và ΔDAC có

góc ODA=góc DCA

góc A chung

=>ΔOAD đồng dạng với ΔDAC

=>góc AOD=góc ADC=90 độ

=>AC vuông góc BD tại O

c: Xét ΔOAB và ΔOCD có

góc OAB=góc OCD

góc AOB=góc COD

=>ΔOAB đồng dạng với ΔOCD

=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81

 

14 tháng 5 2019

. a) HS tự chứng minh

b) Kẻ đường cao AH, BK,chứng minh được DH = CK

Ta được   H D = C D − A B 2 = 3 c m

Þ AH = 4cm Þ  SABCD = 20cm2

19 tháng 4 2019

Câu c là DM nhak mình ghi nhầm 

On cần gấp

19 tháng 4 2019

Gọi r là chiều rộng

d là chiều dài

Chu vi  hình vuông là:

9.4=36( cm)

=> chu vi hình vuông là 36 cm

=>( r+d).2=36( cm)

=>( r+d)=18( cm)

=> r=8(cm)

 Vậy chiều rộng hình chữ nhật là 8cm

5 tháng 3 2021

kho the minh moi lop2 - ok

a) Xét \(\Delta ABM\)và \(\Delta DMC\)có :

\(\widehat{BAM}=\widehat{MDC}\left(=90^0\right)\)

\(\frac{AB}{AM}=\frac{DM}{DC}\left(=\frac{3}{4}\right)\)

\(\Rightarrow\Delta ABM\infty\Delta DMC\left(c.g.c\right)\)

b) Từ \(\Delta ABM\infty\Delta DMC\)

\(\Rightarrow\widehat{AMB}=\widehat{DCM}\)

\(\Rightarrow\widehat{AMB}+\widehat{DMC}=\widehat{DCM}+\widehat{DMC}=90^0\)

\(\Rightarrow\widehat{BMC}=180^0-\left(\widehat{AMB}+\widehat{DMC}\right)=90^0\)

\(\Rightarrow\Delta MBC\)vuông tại M

c) \(MC=\sqrt{DM^2+DC^2}\)

\(=\sqrt{12^2+16^2}\)

\(=20\)

\(\Rightarrow S_{MBC}=\frac{10\times20}{2}=100\)

#phuongmato