Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Pt pháp tuyến của mặt phẳng cần tìm là n ⇀ = d , ⇀ ∆ ⇀ = (1;0;1)
Pt có dạng: x+z+D=0
Khoảng cách từ O (-1;1;-2) đến mp là 2
⇒ D=1
Pt có dạng : x+z+1=0
Chọn B
Mặt cầu (S) có tâm I (3;1;0) và bán kính là R = 2.
Gọi H (1+2t;-1+t;-t) là hình chiếu của I trên d.
Gọi (Q) là mặt phẳng chứa d.
Bán kính đường tròn giao tuyến của mặt phẳng chứa d và mặt cầu (S) là , suy ra r nhỏ nhất khi d (I, (Q)) lớn nhất.
Gọi M là hình chiếu của I trên (Q).
Ta có d (I, (Q)) = IM ≤ IH suy ra d (I, (Q)) lớn nhất khi d (I, (Q)) = IH, lúc đó mặt phẳng (Q) qua H (3;0;-1) và có một véc tơ pháp tuyến là
Phương trình mặt phẳng (Q): y+z+1=0.
Chọn D
Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.
Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.
Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)
Mặt phẳng (P) tiếp xúc với (S) nên
Thay 3a=2 (c+b ) vào (*) ta được:
TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).
TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ ⊂ (P))
Chọn D
Gọi I (m; 0; 0) là tâm mặt cầu có bán kính R, d1, d2 là các khoảng cách từ I đến (P) và (Q).
Yêu cầu bài toán tương đương phương trình (1) có đúng một nghiệm m