Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3b-ab^3=ab\left(a^2-b^2\right)=ab\left(a^2-ab+ab-b^2\right)=ab\left(a-b\right)\left(a+b\right)\)
Với a hoặc b chẵn \(\Leftrightarrow ab\left(a-b\right)\left(a+b\right)⋮2\)
Với a và b lẻ \(\Leftrightarrow\left(a-b\right)⋮2\Leftrightarrow ab\left(a-b\right)\left(a+b\right)⋮2\)
Vậy \(ab\left(a-b\right)\left(a+b\right)⋮2,\forall a,b\left(1\right)\)
Với a hoặc b chia hết cho 3 thì \(ab\left(a-b\right)\left(a+b\right)⋮3\)
Với \(a=3k+1;b=3q+1\Leftrightarrow\left(a-b\right)=3\left(k-q\right)⋮3\)
\(\Leftrightarrow ab\left(a-b\right)\left(a+b\right)⋮3\)
Với \(a=3k+1;b=3q+2\Leftrightarrow\left(a+b\right)=\left(3k+1+3q+2\right)=3\left(k+q+1\right)⋮3\)
\(\Leftrightarrow ab\left(a-b\right)\left(a+b\right)⋮3\)
Mà a,b có vai trò tương đương nên \(ab\left(a-b\right)\left(a+b\right)⋮3,\forall a,b\left(2\right)\)
\(\left(1\right)\left(2\right)\Leftrightarrowđpcm\)
Ta có : a3b -ab3
=a3b -ab -ab3 +ab
=ab (a2 -1) -ab (b2 -1)
=ab (a-1)(a+1) -ab (b-1)(b+1)
Vì a (a-1)(a+1) là 3 số tự nhiên liên tiếp nên chia hết cho 6 .Tương tự b (b-1)(b+1) cũng chia hết cho 6
=> a3b -ab3 chia hết cho 6 (đpcm )
e,\(3\frac{2}{7}x-\frac{1}{8}=2\frac{3}{4}\)
\(=>\frac{23}{7}x-\frac{1}{8}=\frac{11}{4}\)
\(=>\frac{23}{7}x=\frac{11}{4}+\frac{1}{8}=\frac{23}{8}\)
\(=>x=\frac{23}{8}:\frac{23}{7}\)
\(=>x=\frac{7}{8}\)
b) \(5\frac{1}{4}.\frac{3}{8}+10\frac{3}{4}.\frac{3}{8}\)
\(=\left(5\frac{1}{4}+10\frac{3}{4}\right).\frac{3}{8}\)
\(=16.\frac{3}{8}=6\)
c) \(6\frac{1}{5}.\frac{-2}{7}+14\frac{4}{5}.\frac{-2}{7}\)
\(=\left(6\frac{1}{5}+14\frac{4}{5}\right).\frac{-2}{7}\)
\(=21.\frac{-2}{7}=-6\)
3:
a: =8/24+9/24-14/24=3/24=1/8
b: =-12/56+35/56-28/56=-5/56
c: =9/36-24/36-22/36=-37/36
d: \(=\dfrac{6}{24}+\dfrac{10}{24}-\dfrac{21}{24}-\dfrac{1}{13}=\dfrac{-5}{24}-\dfrac{1}{13}=\dfrac{-89}{24\cdot13}\)
a: Ư(8)={1;2;4;8}
Ư(12)={1;2;3;4;6;12}
UC(8;12)={1;2;4}
b: B(16)={0;16;32;...}
B(24)={0;24;48;...}
BC(16,24)={0;48;96;...}
a: 2^n-1 chia hết cho 9
=>n=6
b: 2*3^n+3 chia hết cho 11
=>n=4