K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

\(=>C=\dfrac{5^{996}\left(5^{101}+10-10\right)-1}{4}\)

\(=>C=\dfrac{5^{1097}-1}{4}\)

CHÚC BẠN HỌC TỐT......

11 tháng 7 2017

thanks bạn

11 tháng 7 2017

\(=>C=\dfrac{5^{996}\left(5^{101}+10-10\right)-1}{4}\)

\(= >C=\dfrac{5^{1097}-1}{4}\)

Nếu muốn rút gọn thêm nữa thì ta khai triển ở tử thành hằng đẳng thức mở rộng : \(a^n-b^n\) , cụ thể là:

\(5^{1097}-1^{1097}=\left(5-1\right)\left(5^{1096}+5^{1095}+....+5^1+1\right)\)

\(=>C=5^{1096}+5^{1095}+....+5^2+5+1\)

CHÚC BẠN HỌC TỐT.....

15 tháng 10 2015

=1+(2+5-3-4)+ (6+9-7-8)+................+(994+997-995-996)+998

=1+0+0+.........+998

=999

14 tháng 4 2017

= 999

tk ik

24 tháng 6 2023

\(3,x=\dfrac{1}{2},y=-1\)

\(\Rightarrow C=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+1\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-1\right)-1\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)

\(\Rightarrow C=\dfrac{1}{2}\left(\dfrac{1}{4}+1\right)-\dfrac{1}{4}\left(-\dfrac{1}{2}\right)-\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)

\(\Rightarrow C=\dfrac{1}{2}.\dfrac{5}{4}+\dfrac{1}{8}-\left(-\dfrac{1}{4}\right)\)

\(\Rightarrow C=\dfrac{5}{8}+\dfrac{1}{8}+\dfrac{1}{4}\)

\(\Rightarrow C=1\)

\(4,x=\dfrac{1}{2},y=-100\)

\(\Rightarrow D=\dfrac{1}{2}\left[\left(\dfrac{1}{2}\right)^2+100\right]-\left(\dfrac{1}{2}\right)^2\left(\dfrac{1}{2}-100\right)-100\left[\left(\dfrac{1}{2}\right)^2-\dfrac{1}{2}\right]\)

\(\Rightarrow D=\dfrac{1}{2}\left(\dfrac{1}{4}+100\right)-\dfrac{1}{4}\left(-\dfrac{199}{2}\right)-100\left(\dfrac{1}{4}-\dfrac{1}{2}\right)\)

\(\Rightarrow D=\dfrac{1}{2}.\dfrac{401}{4}+\dfrac{199}{8}-100.\left(-\dfrac{1}{4}\right)\)

\(\Rightarrow D=\dfrac{401}{8}+\dfrac{199}{8}+25\)

\(\Rightarrow D=100\)

3: C=x^3-xy-x^3-x^2y+x^2y-xy

=-2xy=-2*1/2*(-1)=1

4: D=x^3-xy-x^3-x^2y+x^2y-xy

=-2xy

=-2*1/2*(-100)=100

26 tháng 3 2023

cái cuối là \(R\left(2023\right)\) hay 2.2023 vậy bạn ?

Sửa đề: 1/R(2023)

R(3)=1*3

R(4)=2*4

R(5)=3*5

...

R(2022)=2020*2022

R(2023)=2021*2023

=>\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2021\cdot2023}+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{2020\cdot2022}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2020\cdot2022}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(=\dfrac{1}{2}\cdot\left(\dfrac{2022}{2023}+\dfrac{505}{1011}\right)\simeq0.7496\)

1: A=4x^2+12x+9-4x^2+4x-1-6x=10x+8

Khi x=201 thì A=10*201+8=2018

2: B=4x^2+20x+25-4x^2+12=20x+37

Khi x=1/20 thì B=1+37=38

7 tháng 7 2023

1, \(A=\left(2x+3\right)^2-\left(2x-1\right)^2-6x\)

\(A=\left[\left(2x+3\right)+\left(2x-1\right)\right]\left[\left(2x+3\right)-\left(2x-1\right)\right]-6x\)

\(A=\left(2x+3+2x-1\right)\left(2x+3-2x+1\right)-6x\)

\(A=4\left(4x+2\right)-6x\)

\(A=16x+8-6x\)

\(A=10x+8\)

Thay \(x=201\) vào A ta có:

\(A=10\cdot201+8=2010+8=2018\)

Vậy: ....

2, \(B=\left(2x+5\right)^2-4\left(x+3\right)\left(x-3\right)\)

\(B=\left(2x+5\right)^2-4\left(x^2-9\right)\)

\(B=4x^2+20x+25-4x^2+36\)

\(B=20x+61\)

Thay \(x=\dfrac{1}{20}\) vào B ta có:

\(B=20\cdot\dfrac{1}{20}+61=1+61=62\)

Vậy: ...

a: ĐKXĐ: x<>0; x<>-3

b: \(=\dfrac{x^2+6x+9}{x\left(x+3\right)}\cdot\dfrac{2}{x+3}=\dfrac{2}{x}\)

c: Khi x=1/5 thì A=2:1/5=10