Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`P(x)+Q(x)-R(x)`
`= 5x^2 + 5x - 4 +2x^2 - 3x + 1 - (4x^2 - x + 3)`
`= 5x^2 + 5x - 4 + 2x^2 - 3x + 1 - 4x^2 + x - 3`
`= (5x^2 + 2x^2 - 4x^2) + (5x - 3x + x) + (-4 + 1 - 3)`
`= 3x^2 + 3x - 6`
Thay `x=-1/2`
`3*(-1/2)^2 + 3*(-1/2) - 6`
`= 3*1/4 - 3/2 - 6`
`= 3/4 - 3/2 - 6`
`= -3/4 - 6 = -27/4`
Vậy, khi `x=-1/2` thì GTr của đa thức là `-27/4`
P(x)+Q(x)-R(x)
=5x^2+5x-4+2x^2-3x+1-4x^2+x-3
=2x^2+3x-6(1)
Khi x=-1/2 thì (1) sẽ là 2*1/4+3*(-1/2)-6=1/2-3/2-6=-7
\(A=\left(\dfrac{6}{1.4}\right)\left(\dfrac{12}{2.5}\right)\left(\dfrac{20}{3.6}\right)\left(\dfrac{x^2+3x+2}{x\left(x+3\right)}\right)\)
\(A=\dfrac{2.3}{1.4}.\dfrac{3.4}{2.5}.\dfrac{4.5}{3.6}...\dfrac{\left(x+1\right)\left(x+2\right)}{x\left(x+3\right)}\)
\(A=\dfrac{2.3.4...\left(x+1\right)}{1.2.3...x}.\dfrac{3.4.5...\left(x+2\right)}{4.5.6...\left(x+3\right)}=\left(x+1\right)\dfrac{3}{x+3}=\dfrac{3\left(x+1\right)}{x+3}\)
Bài 1.
a) Do hai phân thức bằng nhau , ta có :
( x +2)P( x2 - 22) = ( x - 1)Q( x -2)
=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)
Suy ra : P = x - 1 ; Q = ( x + 2)2
b) Do hai phân thức bằng nhau , ta có :
( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)
= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)
Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2
Q = ( x + 2)( x - 1) = x2 + x + 2
Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)
-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)
-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)
- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)
\(P=\left[\dfrac{x^2}{2x-9}\left(\dfrac{3}{x}-\dfrac{1}{x-3}\right)-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x^2}{2x-9}\left(\dfrac{3\left(x-3\right)}{x\left(x-3\right)}-\dfrac{x}{x\left(x-3\right)}\right)-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x^2}{2x-9}.\dfrac{3x-9-x}{x\left(x-3\right)}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x^2}{2x-9}.\dfrac{2x-9}{x\left(x-3\right)}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x^2.\left(2x-9\right)}{\left(2x-9\right)x\left(x-3\right)}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{x}{x-3}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\left[\dfrac{2x}{2\left(x-3\right)}-\dfrac{x+6}{2\left(x-3\right)}\right]:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\dfrac{2x-\left(x+6\right)}{2\left(x-3\right)}:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\dfrac{2x-x-6}{2\left(x-3\right)}:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\dfrac{x-6}{2\left(x-3\right)}:\dfrac{x+2}{2\left(x-3\right)}\)
\(\Leftrightarrow P=\dfrac{x-6}{2\left(x-3\right)}.\dfrac{2\left(x-3\right)}{x+2}\)
\(\Leftrightarrow P=\dfrac{\left(x-6\right).2\left(x-3\right)}{2\left(x-3\right).\left(x+2\right)}\)
\(\Leftrightarrow P=\dfrac{x-6}{x+2}\)
a: \(M=\left[\dfrac{x^2-2x+1}{x^2+x+1}+\dfrac{2x^2-4x-1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right]\cdot\dfrac{x^2+1}{2}\)
\(=\dfrac{x^3-3x^2+3x-1+2x^2-4x-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\cdot\dfrac{x^2+1}{2}\)
\(=\dfrac{x^2+1}{2}\)
Câu 1 :
a) Rút gọn P :
\(P=\dfrac{x+1}{3x-x^2}:\left(\dfrac{3+x}{3-x}-\dfrac{3-x}{3+x}-\dfrac{12x^2}{x^2-9}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left[\dfrac{\left(3+x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}-\dfrac{12x^2}{\left(3-x\right)\left(3+x\right)}\right]\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\left(\dfrac{9+6x+x^2-9+6x-x^2-12x^2}{\left(3-x\right)\left(3+x\right)}\right)\)
\(P=\dfrac{x+1}{x\left(3-x\right)}:\dfrac{12x-12x^2}{\left(3-x\right)\left(x+3\right)}\)
\(P=\dfrac{x+1}{x\left(3-x\right)}.\dfrac{\left(3-x\right)\left(x+3\right)}{12x\left(1-x\right)}\)
\(P=\dfrac{\left(x+1\right)\left(x+3\right)}{12x^2\left(1-x\right)}\)
cái cuối là \(R\left(2023\right)\) hay 2.2023 vậy bạn ?
Sửa đề: 1/R(2023)
R(3)=1*3
R(4)=2*4
R(5)=3*5
...
R(2022)=2020*2022
R(2023)=2021*2023
=>\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{2021\cdot2023}+\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{2020\cdot2022}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2021\cdot2023}+\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2020\cdot2022}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2021}-\dfrac{1}{2023}+\dfrac{1}{2}-\dfrac{1}{4}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2022}{2023}+\dfrac{505}{1011}\right)\simeq0.7496\)