K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2y+4}{4,5x}=\dfrac{3x+2+2y+2-3x-2y-4}{4+5-4,5x}=\dfrac{0}{9-4,5x}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x+2=0\\2y+2=0\\3x+2y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=-2\\2y=-2\\3x+2y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=-1\end{matrix}\right.\)

24 tháng 12 2017

Áp dụng t/c dãy tỉ số bằng nhau :

\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2+2y+2}{4+5}=\dfrac{3x+2y+4}{9}\)

\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2y+4}{4,5x}\)

=> \(\dfrac{3x+2y+4}{9}=\dfrac{3x+2y+4}{4,5x}\)

=> 9 = 4,5x

=> x = 9 : 4,5 = 2

Ta có : \(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}\)

\(\dfrac{3.2+2}{4}=\dfrac{2y+2}{5}\) ( Thay x = 2)

\(2=\dfrac{2y+2}{5}\)

=> 2y = 2.5 - 2 = 8

=> y = 8 : 2 = 4

Vậy x = 2, y = 4

18 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

           \(\frac{3x+2}{4}=\frac{2y+2}{5}=\frac{3x+2y+4}{4,5x}=\frac{3x+2+2y+2}{4+5}=\frac{3x+2y+4}{9}\)

\(\Rightarrow4,5x=9\Rightarrow x=2\)

Mà \(\frac{3x+2}{4}=\frac{2y+2}{5}\)

\(\Rightarrow\frac{3.2+2}{4}=\frac{2y+2}{5}\Rightarrow\frac{2y+2}{5}=2\Rightarrow2y+2=10\Rightarrow y=4\)

\(\Leftrightarrow3x+9y=4x-8y\)

\(\Leftrightarrow x=17y\)

hay \(\dfrac{x}{y}=\dfrac{17}{1}\)

1 tháng 11 2021

\(\Leftrightarrow3\left(x+3y\right)=4\left(x-2y\right)\\ \Leftrightarrow3x+9y=4x-8y\\ \Leftrightarrow x=17y\Leftrightarrow\dfrac{x}{y}=17\)

13 tháng 10 2018

\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}\)\(=\dfrac{3x+2y+4}{4,5x}\)

= \(\dfrac{3x+2+2y+2-\left(3x+2y+4\right)}{4+5-4,5x}\)

= \(\dfrac{3x+2+2y+2-3x-2y-4}{4+5-4,5x}\)

= \(\dfrac{0}{9-4,5x}\) = 0

Giải tiếp cho bạn Nguyễn Linh nhé :

\(\Rightarrow\left\{{}\begin{matrix}3x+2=0\cdot4=0\\2y+2=0\cdot5=0\end{matrix}\right.\)

\(\Rightarrow3x+2=2y+2\)

\(\Rightarrow3x=2y\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\) . Từ đây bạn áp dụng điều kiện thứ 2 của đề bài để tính x và y nhé

22 tháng 7 2021

`(x+1/4)^2=x^2+1/2 x + 1/16`

`(3x^2-2y)^3=27x^6-54x^4y+36x^2y^2-8y^3`

`(2/3 x^2 -1/2 y)^3=8/27 x^6 - 2/3 x^4y+1/2 x^2y^2 - 1/8 y^3`

Đề yêu cầu gì em ha?

3 câu này bạn áp dụng cái này nhé.

`a^2 >=0 forall a`.

`|a| >=0 forall a`.

`1/a` xác định `<=> a ne 0`.

a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y

Dấu = xảy ra khi x=-30 và y=4

b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y

Dấu = xảy ra khi x=-1/3 và y=1/6

c: -x^2-x+1=-(x^2+x-1)

=-(x^2+x+1/4-5/4)

=-(x+1/2)^2+5/4<=5/4

=>R>=3:5/4=12/5

Dấu = xảy ra khi x=-1/2

15 tháng 9 2021

\(2x=3y\text{⇒}\dfrac{x}{3}=\dfrac{y}{2}\text{⇒}\dfrac{x}{21}=\dfrac{y}{14}\)

\(5y=7z\text{⇒}\dfrac{y}{7}=\dfrac{z}{5}\text{⇒}\dfrac{y}{14}=\dfrac{z}{10}\)

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

⇒x=42,y=28,z=20

15 tháng 9 2021

\(\dfrac{x}{3}=\dfrac{y}{2}\)\(\dfrac{x}{15}=\dfrac{y}{10}\)

\(\dfrac{x}{5}=\dfrac{z}{7}\text{⇒}\dfrac{x}{15}=\dfrac{z}{21}\)

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{21}\)\(\dfrac{x}{15}=\dfrac{2y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{2y}{20}=\dfrac{x+2y}{15+20}=\dfrac{-112}{35}=\dfrac{-16}{5}\)

⇒x=48,y=32,z=336/5

21 tháng 5 2018

a)|3x-2|=|3x+5|

x<-5/3 or x>=2/3

3x-2=3x+5=> loai

-5/3<=x<2/3

3x-2=-3x-5

6x=-3;x=-1/2(n)

11 tháng 10 2017

3x - 2y + 7z = -48 \(\Rightarrow\) (3x - 9) - (2y + 8) + (7z - 35) = -100

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-3}{-4}=\dfrac{y+4}{7}=\dfrac{z-5}{3}=\dfrac{3x-9}{-12}=\dfrac{2x+8}{14}=\dfrac{7z-35}{21}=\dfrac{\left(3x-9\right)-\left(2x+8\right)+\left(7z-35\right)}{-12-14+21}=\dfrac{-100}{-5}=20\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-3}{-4}=20\Rightarrow x=-77\\\dfrac{y+4}{7}=20\Rightarrow y=136\\\dfrac{z-5}{3}=20\Rightarrow z=65\end{matrix}\right.\)

11 tháng 10 2017

Bài 1:

Ta có:\(\dfrac{x-3}{-4}=\dfrac{y+4}{7}=\dfrac{z-5}{3}=\dfrac{3x-9}{-12}=\dfrac{2y+8}{14}=\dfrac{7z-35}{21}\)và 31-2y+7z=-48

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{3x-9}{-12}=\dfrac{2y+8}{14}=\dfrac{7z-35}{21}=\dfrac{3x-9-2y-8+7z-35}{-5}=\dfrac{\left(3x-2y+7z\right)-9-8-35}{-5}=-\dfrac{100}{-5}=20\)

\(\Rightarrow\dfrac{x-3}{-4}=20\Rightarrow x=-77\)

\(\Rightarrow\dfrac{y+4}{7}=20\Rightarrow y=136\)

\(\Rightarrow\dfrac{z-5}{3}=20\Rightarrow z=65\)

Vậy ta tìm được các số (x;y;z)=(-77;136;65)