K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

           \(\frac{3x+2}{4}=\frac{2y+2}{5}=\frac{3x+2y+4}{4,5x}=\frac{3x+2+2y+2}{4+5}=\frac{3x+2y+4}{9}\)

\(\Rightarrow4,5x=9\Rightarrow x=2\)

Mà \(\frac{3x+2}{4}=\frac{2y+2}{5}\)

\(\Rightarrow\frac{3.2+2}{4}=\frac{2y+2}{5}\Rightarrow\frac{2y+2}{5}=2\Rightarrow2y+2=10\Rightarrow y=4\)

24 tháng 12 2017

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2y+4}{4,5x}=\dfrac{3x+2+2y+2-3x-2y-4}{4+5-4,5x}=\dfrac{0}{9-4,5x}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x+2=0\\2y+2=0\\3x+2y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=-2\\2y=-2\\3x+2y=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{3}\\y=-1\end{matrix}\right.\)

24 tháng 12 2017

Áp dụng t/c dãy tỉ số bằng nhau :

\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2+2y+2}{4+5}=\dfrac{3x+2y+4}{9}\)

\(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}=\dfrac{3x+2y+4}{4,5x}\)

=> \(\dfrac{3x+2y+4}{9}=\dfrac{3x+2y+4}{4,5x}\)

=> 9 = 4,5x

=> x = 9 : 4,5 = 2

Ta có : \(\dfrac{3x+2}{4}=\dfrac{2y+2}{5}\)

\(\dfrac{3.2+2}{4}=\dfrac{2y+2}{5}\) ( Thay x = 2)

\(2=\dfrac{2y+2}{5}\)

=> 2y = 2.5 - 2 = 8

=> y = 8 : 2 = 4

Vậy x = 2, y = 4

23 tháng 8 2021

Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)

\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)

Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra 

\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)

\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)

23 tháng 8 2021

Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)

Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)

Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra 

\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)

NV
4 tháng 4 2019

a/ \(x^2+y^2=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\) \(\Rightarrow A=0\)

b/ Do \(x=19\Rightarrow20=x+1\)

\(B=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+20\)

\(B=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

\(B=20-x=20-19=1\)

c/ \(x+y+z=0\Rightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)

\(C=\frac{\left(x+y\right)}{y}.\frac{\left(y+z\right)}{z}.\frac{\left(x+z\right)}{x}=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{-xyz}{xyz}=-1\)

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

16 tháng 8 2018

Sửa đề \(\left(3x-\frac{1}{5}\right)^{2014}+\left(\frac{2}{5}y+\frac{4}{7}\right)^{2012}\)

Do VT ko âm 

\(\Rightarrow\hept{\begin{cases}3x=\frac{1}{5}\\\frac{2}{5}y=-\frac{4}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{5}.\frac{1}{3}=\frac{1}{15}\\y=-\frac{4}{7}.\frac{5}{2}=\frac{-10}{7}\end{cases}}\)

16 tháng 8 2018

\(\left(\frac{2}{5}y+\frac{4}{7}\right)^{2016}\) nhé mình thiếu dấu

19 tháng 5 2017

a) (x - 3)x - (x - 3)x + 2 = 0

(x - 3)x - (x - 3)x . (x - 3)2 = 0

(x - 3)x.(1 - (x - 3)2) = 0

=> (x - 3)x = 0     hoặc    1 - (x - 3)x = 0

=> x - 3 = 0         hoặc    (x - 3)x = 1

=> x = 3   

Thay x = 3 ở trường hợp 1 vào trường hợp 2

=. x - 3 = 1

=> x = 4

12 tháng 2 2017

\(\left(\frac{x+7}{8}\right)^{2012}+\left(\frac{2y+1}{5}\right)^{2014}=0\)

\(\Leftrightarrow\left\{\begin{matrix}\frac{x+7}{8}=0\\\frac{2y+1}{5}=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-7\\y=-\frac{1}{2}\end{matrix}\right.\)

vậy x=-7 và y=-1/2