Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt
-Nếu x=0
Nếu n=0 (vô lý)
Nếu n thì vế phải chia hết cho 5, vế trái không chia hết cho 5 loại
Tương tự, thử lần lượt x=1;2;3 để tìm nghiệm.
-Nếu x>3
+) Với y lẻ: Đặt y=2k+1 (kN). Ta có: (mod 8) không là số chính phương loại.
+) Với y chẵn: Đặt y=2k (kN)(mod 4)(loại, vì x>3)
Vì \(7^n+147\) là số chính phương
=> Đặt: \(7^n+147\) với a là số nguyên khi đó ta có:
\(7^n+147=a^2\)không mất tính tổng quát g/s a nguyên dương
mà: n là số tự nhiên nên \(7^n⋮7\); \(147=7^2.3⋮7\)=> \(a^2⋮7\)=> \(a⋮7\)=> \(a^2⋮7^2\)
=> \(7^n⋮7^2\)=> n \(\ge\)2
+) Với n = 2k khi đó: \(k\ge1\)
Ta có: \(7^{2k}+147=a^2\)
<=> \(\left(a-7^k\right)\left(a+7^k\right)=147\)
Vì: \(\hept{\begin{cases}0< a-7^k< a+7^k\\a-7^k;a+7^k⋮7\end{cases}}\)
Do đó: \(\hept{\begin{cases}a+7^k=21\\a-7^k=7\end{cases}}\Leftrightarrow7^k=7\Leftrightarrow k=1\)=> n = 2
Thử lại thỏa mãn
+) Với n = 2k + 1 ta có:
\(7^{2k+1}:4\) dư -1
\(147\): 4 dư 3
=> \(7^{2k+1}+147\) chia 4 dư 2
mà số chính phương chia 4 bằng 0 hoặc 1
=> Loại
Vậy: n = 2
a) Nhận thấy x = 1 không là nghiệm của phương trình nên ta xét \(x\ge2\)
Do đó , y là số lẻ
Mà 12x , y2 \(\equiv1\left(mod8\right)\)
Suy ra 5x \(\equiv1\left(mod8\right)\)
=> x chẵn
Đặt x = 2k (k > 0)
=> 52k = (y - 12k)(y + 12k)
Mặt khác , 5 là số nguyên tố nên tồn tại một số m,m < k thõa : y + 12k = 52k - m
và y - 12k = 5m
=> 2.12k = 5m(52k - 2m - 1)
Nhận thấy : 2 và 12 là hai số nguyên tố cùng nhau với 5
=> 52k + 122k = (12k + 1)2
Mà 2.12k = 5m => m = 0 và y = 12k + 1
=> 2.12k = 25k - 1
Tìm từng giá trị của k thấy k = 1 thõa mãn phương trình
Vậy x = 2 , y = 13
b) Dùng nhị thức Newton , ta khai triển hai hạng tử được
\(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}=2^{2016}+2^{2016}+3^{1008}+3^{1008}=2\left(2^{2016}+3^{1008}\right)⋮2\)
Vậy ......
Đặt \(5^x+12^x=y^2\)
Ta có: \(y^2\equiv5^x+12^x\left(mod3\right)\equiv5^x\left(mod3\right)\equiv\left(-1\right)^x\left(mod3\right)\)
mà ta có số chính phương khi chia cho \(3\)chỉ dư \(0\)hoặc \(1\).
Suy ra \(x\)là số chẵn.
Đặt \(x=2k,k\inℕ\).
Ta có: \(5^{2k}+12^{2k}=y^2\)
\(\Leftrightarrow y^2-12^{2k}=5^{2k}\)
\(\Leftrightarrow\left(y-12^k\right)\left(y+12^k\right)=5^{2k}\)
Suy ra \(\hept{\begin{cases}y-12^k=5^m\\y+12^k=5^n\end{cases}}\)với \(m+n=2k,m< n\).
suy ra \(2.12^k=5^n-5^m=5^m\left(5^{n-m}-1\right)\)
Ta có: \(2.12^k⋮̸5\Rightarrow5^m\left(5^{n-m}-1\right)⋮̸5\Rightarrow m=0\)
\(2.12^k=5^n-1=5^{2k}-1=25^k-1\)
Với \(k=0\): \(2.12^k=2,25^k-1=-1\)không thỏa mãn.
Với \(k=1\): \(2.12^k=2.12=24,25^k-1=25-1=24\)thỏa mãn.
suy ra \(x=2\).
Với \(k\ge2\): \(25^k-1>24^k-1>24^k=\left(2.12\right)^k>2.12^k\)
Vậy \(2\)là giá trị duy nhất của \(x\)thỏa mãn ycbt.