K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2019

các số chứ ko phải cặp số nha

12 tháng 1 2019

mới có lớp 6 thôi à

24 tháng 6 2020

Vì   \(7^n+147\) là số chính phương 

=> Đặt: \(7^n+147\)  với a là số nguyên khi đó ta có: 

\(7^n+147=a^2\)không mất tính tổng quát g/s a nguyên dương

mà: n là số tự nhiên  nên \(7^n⋮7\)\(147=7^2.3⋮7\)=> \(a^2⋮7\)=> \(a⋮7\)=> \(a^2⋮7^2\)

=> \(7^n⋮7^2\)=> n \(\ge\)2

+) Với n = 2k khi đó: \(k\ge1\)

Ta có: \(7^{2k}+147=a^2\)

<=> \(\left(a-7^k\right)\left(a+7^k\right)=147\)

Vì: \(\hept{\begin{cases}0< a-7^k< a+7^k\\a-7^k;a+7^k⋮7\end{cases}}\)

Do đó: \(\hept{\begin{cases}a+7^k=21\\a-7^k=7\end{cases}}\Leftrightarrow7^k=7\Leftrightarrow k=1\)=> n = 2 

Thử lại thỏa mãn

+) Với n = 2k + 1  ta có: 

\(7^{2k+1}:4\) dư -1

\(147\): 4 dư  3

=> \(7^{2k+1}+147\) chia 4 dư 2 

mà số chính phương chia 4 bằng 0 hoặc 1 

=> Loại 

Vậy: n = 2

4 tháng 1 2016

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1=\left(n^2+3n+1\right)^2\)là chính phương
mà \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+2\) cũng là chính phương 
\(\Leftrightarrow\left(n^2+3n+1\right)^2=0\)
pt vô nghiệm

4 tháng 1 2016

ok pạn Phạm thế mạnh

DD
20 tháng 6 2021

\(n^2+2n+\sqrt{n^2+2n+18}+9\)là số chính phương thì \(\sqrt{n^2+2n+18}\)là số tự nhiên.

Khi đó \(n^2+2n+18=m^2\)

\(\Leftrightarrow\left(m-n-1\right)\left(m+n+1\right)=1.17\)

Do \(m,n\)là số tự nhiên nên 

\(\hept{\begin{cases}m-n-1=1\\m+n+1=17\end{cases}}\Leftrightarrow\hept{\begin{cases}m=9\\n=7\end{cases}}\)

Với \(n=7\)thì \(n^2+2n+\sqrt{n^2+2n+18}+9=7^2+2.7+\sqrt{7^2+2.7+18}+9\)

\(=81=9^2\)là số chính phương (thỏa mãn).

Vậy \(n=7\).

22 tháng 11 2017

n^2+n+6=k^2

4n^2+4n+24=4k^2

(2n+1)^2-(2k)^2=-23

(2n+1-2k)(2n+1+2k)=-23

Đến đây bạn tự giải tiếp nhé