Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n^2+2n=a^2(a thuộc N )
n^2+2n+1-1=a^2
(n+1)^2-1=a^2
(n+1)^2-a^2=1
(n+1-a)(n+1+a)=1
Mà a,n thuộc N => a+n+1 thuộc N
=> n+1-a=1 và n+1+a=1
=>n-a=0 và n+a=0
=> n=a=0
Vậy n=0
kho.....................wa........................lanh.....................wa..................rich...................ung................ho..................minh...............cho.................do......................ret............to.............tich...............lai
đề sai rồi bạn ạ : mình sửa lại đề xem có đúng ko nhé :
tìm STN n để \(2n+3⋮n\)
bài làm :
vì \(2n⋮n\Rightarrow\)để \(2n+3⋮n\)thì \(3⋮n\)
=> \(n\inƯ\left(3\right)=\left\{1;3\right\}\)
vậy số n là: 1 ; 3
1)Gọi số tự nhiên cần tìm có dạng ab
Ta có: ab*45=ab2
nên ab=45
Vậy số cần tìm là 45
2)a.Ta có: n và 2n có tổng các chữ số bằng nhau
nên n chia 9 dư p
nên 2n chia 9 dư p
nên 2n-n chia hết cho 9 hay n chia hết cho 9
hờ hờ, các câu còn lại lười lm
Mk sửa lại cái đề nek: Tìn số tự nhiên sao cho n2 + 2n + 12 là số chính phương.
Để \(n^2+2n+12\) là số chính phương
\(\Rightarrow n^2+2n+12=t^2\left(t\inℤ^∗\right)\)
\(\Rightarrow t^2-\left(n^2+2n+1\right)=11\)
\(\Rightarrow t^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(t+n+1\right)\left(t-n-1\right)=11\)
Dễ thấy: \(t+n+1>t-n-1\forall t,n\inℤ^∗\)
\(\Rightarrow\hept{\begin{cases}t+n+1=11\\t-n-1=1\end{cases}\Rightarrow\hept{\begin{cases}t=6\\n=4\end{cases}}}\) ( thỏa mãn )
Vậy \(n=4\) thì \(n^2+2n+12\) là số chính phương.
đề của mk ko có 12 đâu