Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây chỉ là ý kiến của mk , bn nào có ý kiến thêm thì bổ sung nhé
Giải
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
-Gọi số tự nhiên có 2 chữ số cần tìm là n.
-Mà các số có 2 chữ số tận cùng là 01;25;76 nâng lên lũy thừa nào (khác 0) cũng tận cùng bằng 01;25;76.
Lại có n là số tự nhiên có 2 chữ số.
=> n thuộc {25;76}
Vậy ta được các số 25;76 thỏa mãn yêu cầu đề bài.
Gọi số tự nhiên có 4 chữ số đọc ngược lại không đổi sẽ có dạng là abba (a khác 0)
Theo bài ra là số tự nhiên có 4 chữ số chia hết cho 5 nên tận cùng là 0 hoặc 5
Mà điều kiện a khác 0=>a bằng 5 nên có dạng 5bb5
Nếu số tự nhiên 5bb5 là số chính phương thì b =2
=>Số đó là 5225
Kết luận :số đó là 5225
\(\overline{ab}+\overline{ba}=11\left(a+b\right)\)
11 là số nguyên tố để 11(a+b) là số chính phương thì a+b=11
\(\Rightarrow\overline{ab}=\left\{29;38;47;56;65;74;83;92\right\}\)
Gọi số cần tìm là \(\overline{abc}\)\(\left(a,b,c\inℕ^∗\right)\)
\(\Rightarrow b^2=a\times c\)
Theo bài ta có\(\overline{abc}-\overline{cba=495}\)
\(\Leftrightarrow\left(100\times a+10\times b+c\right)-\left(100\times c+10\times b+a\right)=495\)
\(\Leftrightarrow99\times a-99\times c=495\)
\(\Leftrightarrow99\times\left(a-c\right)=495\)
\(\Leftrightarrow a-c=5\)
Ta có bảng sau:
a | 6 | 7 | 8 | 9 |
c | 1 | 2 | 3 | 4 |
\(b^2\) | 6 | 14 | 24 | 36 |
b | L | L | L | 6 |
\(\Rightarrow\overline{abc=964}\)
Vậy số cần tìm là 964
Gọi số cần tìm là abc ( a khác 0; a,b,c là các chữ số)
Ta có
abc - cba 495
=> ( 100a + 10b +c) - ( 100c + 10b + a) + 495
=> 100a + 10b +c- 100c - 10b - a = 495
=> 99a -99c = 495
=> 99.(a-c) = 495
=> a-c = 495 : 99
=> a-c = 5
Ta tìm đc các cặp giá trị (a,c) là :(0,5) ;(6,1) ; (7,2) ; (8,3) ; (9,4)
Như vậy ta tìm đc 2 cặp giá trị (a,c) thỏa mãn là (5,0); (9,4)
Vậy số cần tìm là 500 và 964
Hok tốt!