Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.n + 7 chia hết cho n+2
=> n + 2 + 5 chia hết cho n+2
=> 5 chia hết cho n+2
=> n + 2 thuộc tập hợp các số : 5;-5;1;-1
=> n thuộc tập hợp các số : 3;-7;-1;-3
b.9-n chia hết cho n-3
=> 6 - n - 3 chia hết cho n-3
=> 6 chia hết cho n-3
=> n -3 thuộc tập hợp các số : 1;-1;6;-6
=> n thuộc tập hợp các sô : 4;2;9;-3
Giải hết ra dài lắm
k mk nha
Có 2n^2-1 chia hết cho n +1
Mà 2(n+1) chia hết cho n +1
2n+2 chia hết cho n +1
Hay 2n+2-3 chia hết cho n+1
=> 3 chia hết cho n +1
n+1 thuộc ước của 3 = -3;-1;1;3
n = -4;-2;0;2
(Nếu n thuộc N thì bỏ 2 trường hợp đầu nha)
Vậy n = -4;-2;0;2
bài 1:x.y=-15 => x=3;y=-5
x=-3;y=5
x=5;y=-3
x=-5;y=3
x=-1;y=15
x=1;y=-15
Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong
BÀi 2:
ta có:
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)
Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)
ta có bảng sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
\(n\in\left\{-1;0;2;3\right\}\)
Để : \(2n^2-1⋮\left(n+1\right)\)
\(\Leftrightarrow2n^2-2+1⋮n+1\)
\(\Leftrightarrow2\left(n^2-1\right)+1⋮n+1\)
\(\Leftrightarrow2\left(n-1\right)\left(n+1\right)+1⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1\inƯ\left(1\right)\)
\(\Rightarrow n+1\in\left\{-1,1\right\}\)
\(\Leftrightarrow n\in\left\{-2,0\right\}\)
Vậy : \(n\in\left\{-2,0\right\}\)