Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có a+b =-4 => b= -4 - a
có b + c = -6 => -4-a+c=-6
=> c - a = -2
=>> a= 7 ; c=5
mà a + b =-4 <=> 7 + b =4 =>> b = -3
Giải:
Ta có:
a + b = 4
b + c = 6
c + a = 12
\(\Rightarrow a+b+b+c+c+a=4+6+12\)
\(\Rightarrow2a+2b+2c=22\)
\(\Rightarrow2\left(a+b+c\right)=22\)
\(\Rightarrow a+b+c=11\)
Từ đó \(a=11-6=5\)
\(b=11-12=-1\)
\(c=11-4=7\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(5;-1;7\right)\)
Cộng 3 vế với nhau ta được
a+b+b+c+c+a=-4+(-6)+12
2(a+b+c)=2
a+b+c=1
Suy ra a=1-(-6)=7
b=1-12=-11
c=1-(-4)=5
Đúng rồi đấy, nhớ tk nha
=>(a+b)+(c+b)+(c+a)=-4+-6+12
=>2(a+b+c)=2
=>a+b+c=1
=>a=(a+b+c)-(b+c)=1--6=7
còn lại tự nghĩ
Cộng 3 vế với nhau ta được:
a+b+b+c+c+a=4+6+12
2(a+b+c)=22
a+b+c=11
Trừ đi cho từng biểu thức trên ta được:
a=5; b=-1;c=7
Ta có: \(a+b=-4\left(1\right)\)
\(b+c=-6\left(2\right)\)
\(c+a=12\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\text{và}\left(3\right)\), ta có:
\(\left(a+b\right)+\left(b+a\right)+\left(c+a\right)=\left(-4\right)+\left(-6\right)+12\)
\(a+b+b+c+c+a=-\left(4+6\right)+12\)
\(a+a+b+b+c+c=\left(-10\right)+12\)
\(a\cdot2+b\cdot2+c\cdot2=+\left(12-10\right)\)
\(\left(a+b+c\right)\cdot2=2\)
\(a+b+c=\frac{2}{2}\)
\(a+b+c=1\left(4\right)\)
Thay biểu thức (1) vào biểu thức (4), ta có:
\(\left(-4\right)+c=1\)
\(c=1-\left(-4\right)\)
\(c=1+4\)
\(c=5\)
Thay c = 5 vào biểu thức biểu thức (2), ta có:
\(b+5=-6\)
\(b=\left(-6\right)-5\)
\(b=\left(-6\right)+\left(-5\right)\)
\(b=-\left(6+5\right)\)
\(b=-11\)
Thay b = -11 vào (1), ta có:
\(a+\left(-11\right)=-4\)
\(a=\left(-4\right)-\left(-11\right)\)
\(a=\left(-4\right)+11\)
\(a=+\left(11-4\right)\)
\(a=7\)
Vậy \(a=7;b=-11;c=5\)
tổng của 3 số là:(-4-6+12):2=1 (rồi tính theo tổng - hiệu)
\(a+b=-4;b+c=-6;c+a=12\)
\(\Rightarrow a+b+b+c+c+a=2\left(a+b+c\right)=-4+-6+12=2\)
\(\Rightarrow a+b+c=2\div2=1\)
\(\Rightarrow a=\left(a+b+c\right)-\left(b+c\right)=1-\left(-6\right)=7\)
\(b=\left(a+b+c\right)-\left(c+a\right)=1-12=-11\)
\(c=\left(a+b+c\right)-\left(a+b\right)=1-\left(-4\right)=5\)
Vậy a = 7; b = -11; c = 5
a + b = -4
b + c = -6
c + a = 12
=> a = 7
b = -11
c = 5
ta có (a+b) + (b+c) +(c+a) = -4 -6 +12
=> 2(a+b+c) =2
=> a+b+c =1
a = (a+b+c) - (b+c) = 1 -(-6) =7
b=(a+b+c) - ( a+c) =1 - 12 =-11
c=(a+b+c) - (a+b) =1 - (-4) = 5
Ta có : (a+b)+(b+c)+(c+a)= -4-6+12
=>2.(a+b+c)=2
a+b+c=2:2=1
=>a=(a+b+c)-(b+c)=1-(-6)=7
b=(a+b+c)-(a+c)=1-12=-11
c=(a+b+c)-(a+b)=1-(-4)=5
Ta có:(a+b)+(b+c)+(c+a)=-4+(-6)+12=2
Hay 2(a+b+c)=2
=>a+b+c=1
Do đó:
a+b+c-(a+b)=1-(-4)
a+b+c-a-b=5
c=5(thỏa mãn) (thỏa mãn ở đây là thỏa mãn c nguyên)
Theo đề bài: b+c=-6
=>b+5=-6
=>b=-11(thỏa mãn)
Ta có: a+b+c=1
=>a+(-11)+5=1
a=1+11-5=7(thỏa mãn)
Vậy a=7.b=-11,c=5
Ta có:(a+b)+(b+c)+(c+a)=-4+(-6)+12=2
Hay 2(a+b+c)=2
=>a+b+c=1
Do đó:
a+b+c-(a+b)=1-(-4)
a+b+c-a-b=5
c=5(thỏa mãn) (thỏa mãn ở đây là thỏa mãn c nguyên)
Theo đề bài: b+c=-6
=>b+5=-6
=>b=-11(thỏa mãn)
Ta có: a+b+c=1
=>a+(-11)+5=1
a=1+11-5=7(thỏa mãn)
Vậy a=7.b=-11,c=5