Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2+4+6+........+2n=870
2.(2+4+6+.......+2n)=870
2+4+6+........+2n=870:2
2+4+6+....... +2n=435
=>n.(n+1):2=435
n.(n+1)=435.2
n.(n+1)=870
Vì 29.30=870=>n=29
\(2\left(1+2+3+...+n\right)=870\)
\(\leftrightarrow2.\frac{n\left(n-1\right)}{2}=870\)
\(\leftrightarrow n\left(n-1\right)=870=30.29\)
\(\rightarrow n=30\)
a)
\(\left(2n+1\right)^3=27\)
\(\left(2n+1\right)^3=3^3\)
\(2n+1=3\)
\(2n=3+1\)
\(2n=4\)
\(n=4\div2\)
\(n=2\)
b)
\(\left(n+2\right)^2=\left(n+2\right)^4\)
\(\left(n+2\right)^4-\left(n+2\right)^2=0\)
\(\left(n+2\right)^2\cdot\left(n+2\right)^2-\left(n+2\right)^2\cdot1=0\)
\(\left(n+2\right)^2\cdot\left[\left(n+2\right)^2-1\right]=0\)
\(\Rightarrow\left(n+2\right)^2=0hoạc\left(n+2\right)^2-1=0\)
\(\left(n+2\right)^2=0\)
\(n+2=0\)
\(n=0+2\)
\(n=2\)
\(\left(n+2\right)^2-1=0\)
\(\left(n+2\right)^2=0+1\)
\(\left(n+2\right)^2=1\)
\(n+2=1\)
\(n=1+2\)
\(n=3\)
Vậy \(n\in\left\{2;3\right\}\)
\(A=\left(\frac{2+2m.m}{2m}\right)=\left(\frac{2\left(1+m\right).m}{2m}\right)=1+m\)
\(B=\left(\frac{2+2n.n}{2n}\right)=\left(\frac{2\left(1.n\right).n}{2n}\right)=1.n\)
Do đó A < b => 1 + m < 1 + n => m < n
\(A=\frac{\left(2+2m\right).m}{2m}=\frac{2\left(1+m\right).m}{2m}=1+m\)
\(B=\frac{\left(2+2n\right).n}{2n}=\frac{2\left(1+n\right).n}{2n}=1+n\)
do A < b => 1 + m < 1 +n => m < n
Ta có : 2 + 4 + 6 +... + 2n = 10100
=> 2(1 + 2 + 3 + ... + n) = 10100
=> 2n(n + 1) : 2 = 10100
=> n(n + 1) = 100.101
=> n = 100
Vậy n = 100
Lời giải:
2 + 4 + 6 + ....+ 2n = 10100
= 2 . ( 1 + 2 + 3 + .... + n) = 10100
= 2n. (n + 1) :2 = 10100
= n . (n + 1) = 100 . 101
=> n = 100
Vậy n=100
Chúc học tốt!!!