Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
Ta có : \(5x-x^2+13=-x^2+5x+13\)
\(=-\left(x^2-5x-13\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}-13\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{77}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\)
Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\))
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{77}{4}\le\dfrac{77}{4}\) hay \(A\le0\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\))
Vậy Max A=\(\dfrac{77}{4}\) tại x=\(\dfrac{5}{2}\)
\(x^2+2xy+4x+4y+3y^2+3=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(4x+4y\right)+4+2y^2-1=0\)
\(\Leftrightarrow\left(x+y\right)^2+4\left(x+y\right)+4=1-2y^2\)
\(\Leftrightarrow\left(x+y+2\right)^2=1-2y^2\)
Do \(VP=1-2y^2\le1\forall y\) nên \(VT=\left(x+y+2\right)^2\le1\)
\(\Leftrightarrow-1\le x+y+2\le1\)
\(\Leftrightarrow-1+2015\le x+y+2+2015\le1+2015\)
\(\Leftrightarrow2014\le x+y+2017\le2016\)
Hay \(2014\le B\le2016\)
lê thị mỹ vân:
a) Theo đề sửa:
$A=x^2+2y^2-2xy+4x-3y+1$
$=(x^2-2xy+y^2)+y^2+4x-3y+1$
$=(x-y)^2+4(x-y)+y^2+y+1$
$=(x-y)^2+4(x-y)+4+y^2+y+\frac{1}{4}-\frac{13}{4}$
$=(x-y+2)^2+(y+\frac{1}{2})^2-\frac{13}{4}$
$\geq \frac{-13}{4}$
Vậy GTNN của $A$ là $\frac{-13}{4}$. Giá trị này đạt được tại $x-y+2=y+\frac{1}{2}=0$
$\Leftrightarrow x=\frac{-5}{2}; y=\frac{-1}{2}$
Lời giải:
a) Biểu thức không có min. Bạn xem lại đề.
b)
$B=2x^2+3y^2-4xy+4x+4y-2$
$=2(x^2-2xy+y^2)+y^2+4x+4y-2$
$=2(x-y)^2+4(x-y)+y^2+8y-2$
$=2[(x-y)^2+2(x-y)+1]+(y^2+8y+16)-20$
$=2(x-y+1)^2+(y+4)^2-20$
$\geq 0+0-20=-20$
Vậy $B_{\min}=-20$
Giá trị này đạt được khi $x-y+1=0$ và $y+4=0$
$\Leftrightarrow (x,y)=(-5,-4)$
a) \(x^2y+2xy+y=y\left(x^2+2x+1\right)=y\left(x+1\right)^2\)
b) \(4x^2-4xy-6y^2+6xy=4x\left(x-y\right)+6y\left(x-y\right)=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
c) \(18x^5y+18x^3y-2x^3y^5-2xy^5=18x^3y\left(x^2+1\right)-2xy^5\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(18x^3y-2xy^5\right)=2xy\left(x^2+1\right)\left(9x^2-y^4\right)=2xy\left(x^2+1\right)\left(3x-y^2\right)\left(3x+y^2\right)\)
d)
d) \(-12x^5-12x^3y-3xy^2+36x^4+36x^2y+9y^2=-3x\left(4x^4+4x^2y+y^2\right)+9y\left(4x^4+4x^2y+y^2\right)\)\(=\left(4x^4+4x^2y+y^2\right)\left(9-3x\right)\)
a)\(P=x^2+4x+2xy+3y^2+5y+2017\)
\(=x^2+2xy+y^2+4y+4+4x+2y^2+y+\dfrac{1}{8}+\dfrac{16103}{8}\)
\(=\left(x+y+2\right)^2+2\left(y^2+\dfrac{y}{2}+\dfrac{1}{16}\right)+\dfrac{16103}{8}\)
\(=\left(x+y+2\right)^2+2\left(y+\dfrac{1}{4}\right)^2+\dfrac{16103}{8}\ge\dfrac{16103}{8}\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{7}{4}\\y=-\dfrac{1}{4}\end{matrix}\right.\)
b)\(Q=-x^2+4x-3y^2+6y+2017\)
\(=-x^2+4x-4-3y^2+6y+3+2024\)
\(=-\left(x^2-4x+4\right)-\left(3y^2-6y-3\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y^2-2y-1\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\ge2024\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Ta có:
\(P=x^2+4x+2xy+3y^2+5y+2017\)
\(=x^2+2x\left(y+2\right)+\left(y+2\right)^2+2y^2+y+2013\)
\(=\left[x+\left(y+2\right)\right]^2+2\left(y^2+y+0,25\right)+2012,5\)
\(=\left(x+y+2\right)^2+2\left(y+0,5\right)^2+2012,5\ge2012,5\)
Dấu "=" xảy ra khi:
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+2=0\\y+0,5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)
Vậy \(minP=2012,5\) khi \(\left\{{}\begin{matrix}y=-0,5\\x=-1,5\end{matrix}\right.\)
Ta có:
\(Q=-x^2+4x-3y^2+6y+2017\)
\(=-\left(x^2-4x+4\right)-3\left(y^2-2y+1\right)+2024\)
\(=-\left(x-2\right)^2-3\left(y-1\right)^2+2024\le2024\)
Dấu "=" xảy ra khi \(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(maxQ=2024\) khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)