Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(-1\le cosx\le1\Rightarrow-4\le y=3cosx-1\le2\)
b.-1 \(\le sinx\le1\)\(\Rightarrow3\le y=5+2sinx\le7\)
c.\(\sqrt{3-1}\le\sqrt{3+cos2x}\le\sqrt{3+1}\Rightarrow\sqrt{2}\le y\le2\)
d.\(y=\sqrt{5sinx-1}+2\le\sqrt{5.1-1}+2=4\)
\(y=\sqrt{5sinx-1}+2\ge2\) . " = " \(\Leftrightarrow sinx=\dfrac{1}{5}\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(\dfrac{1}{5}\right)+2k\pi\\x=\pi-arcsin\left(\dfrac{1}{5}\right)+2k\pi\end{matrix}\right.\) ( k thuộc Z )
1.
\(y=\sqrt{5-2\cos ^2x\sin ^2x}=\sqrt{5-\frac{1}{2}(2\cos x\sin x)^2}=\sqrt{5-\frac{1}{2}\sin ^22x}\)
Dễ thấy:
$\sin ^22x\geq 0\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\leq \sqrt{5}$
Vậy $y_{\max}=\sqrt{5}$
$\sin ^22x\leq 1\Rightarrow y=\sqrt{5-\frac{1}{2}\sin ^22x}\geq \sqrt{5-\frac{1}{2}}=\frac{3\sqrt{2}}{2}$
Vậy $y_{\min}=\frac{3\sqrt{2}}{2}$
2.
$y=1+\frac{1}{2}\sin 2x\cos 2x=1+\frac{1}{4}.2\sin 2x\cos 2x$
$=1+\frac{1}{4}\sin 4x$
Vì $-1\leq \sin 4x\leq 1$
$\Rightarrow \frac{5}{4}\leq 1+\frac{1}{4}\sin 4x\leq \frac{3}{4}$
$\Leftrightarrow \frac{5}{4}\leq y\leq \frac{3}{4}$
Vậy $y_{\max}=\frac{5}{4}; y_{\min}=\frac{3}{4}$
a.
\(-1\le sinx\le1\Rightarrow-7\le y\le-3\)
\(y_{min}=-7\) khi \(sinx=-1\)
\(y_{max}=-3\) khi \(sinx=1\)
b.
\(-1\le cos\left(x+\frac{\pi}{3}\right)\le1\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(cos\left(x+\frac{\pi}{3}\right)=-1\)
\(y_{max}=5\) khi \(cos\left(x+\frac{\pi}{3}\right)=1\)
c.
\(0\le1-cosx\le2\Rightarrow-5\le y\le3\sqrt{2}-5\)
\(y_{min}=-5\) khi \(cosx=1\)
\(y_{max}=3\sqrt{2}-5\) khi \(cosx=-1\)
d.
ĐKXĐ: \(0\le sinx\Rightarrow0\le sinx\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(sinx=0\)
\(y_{max}=3\) khi \(sinx=1\)
a) \(y=1-2sinx\)
Ta có: \(-1\le sinx\le1\Rightarrow-2\le2sinx\le2\)
\(\Rightarrow2\ge-2sin2x\ge-2\)
\(\Rightarrow3\ge1-2sinx\ge-1\)
Vậy \(y_{max}=3,y_{min}=-1\)
2, sin4x+cos5=0 <=> cos5x=cos\(\left(\frac{\pi}{2}+4x\right)\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{2}+k2\pi\\x=-\frac{\pi}{18}+\frac{k2\pi}{9}\end{cases}\left(k\inℤ\right)}\)
ta có \(2\pi>0\Leftrightarrow k< >\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(\frac{\pi}{2}\)khi k=0
\(-\frac{\pi}{18}+\frac{k2\pi}{9}>0\Leftrightarrow k>\frac{1}{4}\)do k nguyên nên nghiệm dương nhỏ nhất trong họ nghiệm \(-\frac{\pi}{18}-\frac{k2\pi}{9}\)là \(\frac{\pi}{6}\)khi k=1
vậy nghiệm dương nhỏ nhất của phương trình là \(\frac{\pi}{6}\)
\(\frac{\pi}{2}+k2\pi< 0\Leftrightarrow k< -\frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(\frac{\pi}{2}+k2\pi\)là \(-\frac{3\pi}{2}\)khi k=-1
\(-\frac{\pi}{18}+\frac{k2\pi}{9}< 0\Leftrightarrow k< \frac{1}{4}\)do k nguyên nên nghiệm âm lớn nhất trong họ nghiệm \(-\frac{\pi}{18}+\frac{k2\pi}{9}\)là \(-\frac{\pi}{18}\)khi k=0
vậy nghiệm âm lớn nhất của phương trình là \(-\frac{\pi}{18}\)
a.
\(y=sinx.cosx+1=\dfrac{1}{2}sin2x+1\)
\(-1\le sin2x\le1\Rightarrow\dfrac{1}{2}\le y\le\dfrac{3}{2}\)
\(y_{min}=\dfrac{1}{2}\) khi \(sin2x=-1\Rightarrow x=-\dfrac{\pi}{4}+k\pi\)
\(y_{max}=\dfrac{3}{2}\) khi \(sin2x=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
b.
\(y=2\left(\dfrac{\sqrt{3}}{2}sinx-\dfrac{1}{2}cosx\right)-2=2.sin\left(x-\dfrac{\pi}{6}\right)-2\)
\(-1\le sin\left(x-\dfrac{\pi}{6}\right)\le1\Rightarrow-4\le y\le0\)
\(y_{min}=-4\) khi \(sin\left(x-\dfrac{\pi}{6}\right)=-1\Rightarrow x=-\dfrac{\pi}{3}+k2\pi\)
\(y_{max}=0\) khi \(sin\left(x-\dfrac{\pi}{6}\right)=1\Rightarrow x=\dfrac{2\pi}{3}+k2\pi\)
Đặt \(\left\{{}\begin{matrix}\sqrt{5sin^2x+1}=a\\\sqrt{5cos^2x+1}=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}1\le a;b\le\sqrt{6}\\a^2+b^2=5\left(sin^2x+cos^2x\right)+2=7\end{matrix}\right.\)
\(y=a+b\le\sqrt{2\left(a^2+b^2\right)}=\sqrt{14}\)
\(y_{max}=\sqrt{14}\) khi \(cos2x=0\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Do \(1\le a\le\sqrt{6}\Rightarrow\left(a-1\right)\left(a-\sqrt{6}\right)\le0\)
\(\Rightarrow a\ge\dfrac{a^2+\sqrt[]{6}}{\sqrt{6}+1}\)
Tương tự ta có \(b\ge\dfrac{b^2+\sqrt{6}}{\sqrt{6}+1}\)
\(\Rightarrow y=a+b\ge\dfrac{a^2+b^2+2\sqrt{6}}{\sqrt{6}+1}=\dfrac{7+2\sqrt{6}}{\sqrt{6}+1}=\sqrt{6}+1\)
\(y_{min}=\sqrt{6}+1\) khi \(sin2x=0\Rightarrow x=\dfrac{k\pi}{2}\)
a) làm tương tự 2 bài mk đã giải nha.
b) \(y=2\cos^2x-2\sqrt{3}\sin x\cos x+1\)
\(=1-\left(\cos2x+\sqrt{3}\sin2x\right)\)
Lại có \(-2\le\cos2x+\sqrt{3}\sin2x\le2\) \(\Rightarrow-1\le y\le3\)
c) Vì \(\left\{{}\begin{matrix}0\le\sqrt[4]{\sin x}\le1\\0\le\sqrt{\cos x}\le1\end{matrix}\right.\)
Do đó \(-1\le y\le1\)
a) \(1-2018sin\left(2019x+2020\right)\)
có: \(-1\le sin\left(2019x+2020\right)\le1\)
\(-2018\le2018sin\left(2019x+2020\right)\le2018\)
\(-2017\le1-2018sin\left(2019x+2020\right)\le2019\)
b) \(1+\sqrt{5+4cos3x}\)
có: \(-1\le cos3x\le1\)
\(-4\le4cos3x\le4\)
\(1\le5+4cos3x\le9\)
\(1\le\sqrt{5+4cos3x}\le3\)
\(2\le1+\sqrt{5+4cos3x}\le4\)
c) \(y=\sqrt{3}sin5x-cos5x\)
Đặt \(\sqrt{3}sin5x-cos5x=c\)
Điều kiện có nghiệm của phương trình này là \(c^2\le\left(\sqrt{3}\right)^2+1^2=4\Leftrightarrow-2\le c\le2\)
do đó \(-2\le\sqrt{3}sin5x-cos5x\le2\)
d) \(5+4sin2x.cos2x=5+2sin4x\)
\(-1\le sin4x\le1\)
\(-2\le2sin4x\le2\)
\(3\le5+2sin4x\le7\)