Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
1/
a, \(A=4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)
Dấu "=" xảy ra khi x=1/2
Vậy Amin=4 khi x=1/2
b, \(B=3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Dấu "=" xảy ra khi x=-1
Vậy Bmin = -4 khi x=-1
2/
a, \(A=10+6x-x^2=-\left(x^2-6x+9\right)+19=-\left(x-3\right)^2+19\le19\)
Dấu "=" xảy ra khi x=3
Vậy Amax = 19 khi x=3
b, \(B=7-5x-2x^2=-2\left(x^2-\frac{5}{2}x+\frac{25}{16}\right)+\frac{31}{8}=-2\left(x-\frac{5}{4}\right)^2+\frac{31}{8}\le\frac{31}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmax = 31/8 khi x=5/4
a) \(A=x^2+6x+10\)
\(A=x^2+2\cdot x\cdot3+3^2+1\)
\(A=\left(x+3\right)^2+1\ge1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
b) \(B=2x^2+y^2+2xy+4x+15\)
\(B=\left(x^2+2xy+y^2\right)+\left(x^2+2\cdot x\cdot2+2^2\right)+11\)
\(B=\left(x+y\right)^2+\left(x+2\right)^2+11\ge11\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=2\\x=-2\end{cases}}\)
\(A=x^2+x\) . Có: \(x^2\ge x\Rightarrow x^2+x\ge0\)
Dấu '=' xảy ra khi: \(x^2+x=0\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy: \(Min_A=0\) tại \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(B=4x-12x+10\)
\(B=-8x+10\)
\(B=10-8x\)
Xét: \(x< 0\Rightarrow10-8x\ge10\)
Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)
Xét: \(x>0\Rightarrow10-8x\le10\)
Dấu '=' xảy ra khi: \(8x=0\Rightarrow x=0\)
Vậy: Khi x<0. \(Min_B=10\) tại \(x=0\)
Khi: x>0. \(Max_B=10\)tại \(x=0\)
K chắc
a) \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)
b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được
\(B=4x^2+4x+11\)
\(=4\left(x^2+x+\frac{11}{4}\right)\)
\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)
\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)
\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
c) Tìm GTLN nhé
\(C=5-8x-x^2\)
\(=-x^2-2.x.4-16+16+5\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)
Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-4\)
Vậy\(C_{max}=21\Leftrightarrow x=-4\)
A = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
B = 4x2 + 4x + 11
= ( 4x2 + 4x + 1 ) + 10
= ( 2x + 1 )2 + 10 ≥ 10 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = 5 - 8x - x2
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxC = 21 <=> x = -4
D = 2x2 - 4x + 3
= 2(x2 - 2x) + 3
= 2(x2 - 2x + 1) + 1
= 2(x - 1)2 + 1
Có 2(x - 1)2 \(\ge\)0 với mọi x
=> 2(x - 1)2 + 1 \(\ge\)1 với mọi x
=> D \(\ge\)1 với mọi x
Dấu "=" xảy ra <=> x - 1 = 0 <=> x = 1
KL: Dmin = 1 <=> x = 1
\(A=x^4-2x^3+3x^2-4x+7\)
\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+5\)
\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+5\ge5\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x-1=0\end{cases}\Rightarrow x=1}\)
Vậy \(A_{min}=5\Leftrightarrow x=1\)
Ta có:2x2-4x+10=2x2-4x+2+8
=2(x2-2x+1)+8=2(x-1)2+8.Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\ge0\)
\(\Rightarrow2\left(x-1\right)^2+8\ge8\)\(\Rightarrow\)GTNN của A=8 đạt được khi \(\left(x-1\right)^2=0\Leftrightarrow x=1\)
Ta có : 2x2 - 4x + 10
= 2(x2 - 2x + 5)
= 2(x2 - 2x + 1 + 4)
= 2[(x - 1)2 + 4 ]
= 2(x - 1)2 + 4
Mà 2(x - 1)2 \(\ge0\forall x\)
Nên : 2(x - 1)2 + 4 \(\ge4\forall x\)
Vậy Amin = 4 , dấu "=" xảy ra khi và chỉ khi x = 1