Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(x-2y\right)^2+y^2+2x+6y+2046=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y^2+10y+25\right)+2020=\left(x-2y+1\right)^2+\left(y+5\right)^2+2020\ge2020\)
\(minB=2020\Leftrightarrow\)\(\left\{{}\begin{matrix}x=-11\\y=-5\end{matrix}\right.\)
A = x2 + 2y2 + 2xy - 2x - 6y + 6
A = (x2 + 2xy + y2) - 2(x + y) + 1 + (y2 - 4y + 4) + 1
A = (x + y - 1)2 + (y - 2)2 + 1 \(\ge\)1 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1-y\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MinA = 1 khi x = -1 và y = 2
\(Q=x^2+2y^2+2xy-2x-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)
\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)
\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)
\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)
Dấu "=" xảy ra khi x=-3;y=4
Xin lỗi bạn Cool chỉ biết làm cách vắn tắt thôi nếu vắn tắt quá thì cho Cool xin lỗi vì Cool không giỏi dạng này
A=[(X\(^2\) -2XY+Y\(^2\) )+2(X-Y)+1]+(Y\(^2\) -8Y+16)]
(X-Y+1)\(^2\)+(Y-4)\(^2\)
\(\Rightarrow=0\)
=>Amin=0 khi y=4;x=3
Đặt \(KK=x^2-2xy+2y^2+2x-10y+17\)
\(KK=\left(x^2-2xy+y^2\right)+y^2+2x-10y+17\)
\(KK=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y^2-8y+16\right)\)
\(KK=\left(x-y+1\right)^2+\left(y-4\right)^2\)
Mà \(\left(x-y+1\right)^2\ge0\)
\(\left(y-4\right)^2\ge0\)
\(\Rightarrow KK\ge0\)
Dấu " = " xảy ra khi :
\(\hept{\begin{cases}x-y+1=0\\y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=4\end{cases}}\)
Vậy \(KK_{Min}=0\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)
Ta có \(C=x^2+2y^2-2xy-4y+5=\left(x-2xy+y^2\right)+\left(y^2-4y+4\right)+1\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+1\)
Do \(\left(x-y\right)^2\ge0;\left(y-2\right)^2\ge0\Rightarrow C\ge1\)
Vậy GTNN của C là 1 khi \(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}}\Leftrightarrow x=y=2\)
\(Q=x^2+2y^2-2xy-4y+2017\)
\(Q=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2013\)
\(Q=\left(x-y\right)^2+\left(y-2\right)^2+2013\ge2013\)
Vậy GTNN của Q=2013 <=> \(\orbr{\begin{cases}x-y=0\\y-2=0\end{cases}}\)<=>\(\orbr{\begin{cases}\\\end{cases}}x=y=2\)
\(A=x^2+2y^2+2xy-4x+6y+2020\)
\(A=\left(x^2+y^2+2^2+2xy-4y-4x\right)+\left(y^2+10y+25\right)+1991\)
\(A=\left(x+y-2\right)^2+\left(y+5\right)^2+1991\ge1991\)
Vậy \(Min_A=1991\)khi \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-5\end{cases}}\hept{\begin{cases}x=7\\y=-5\end{cases}}\)
\(2x^2+2y^2-2xy-6y+21\)
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12y+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(4x^2-4xy+y^2\right)+\left(3y^2-12y+42\right)\)
\(=\left(2x-y\right)^2+3\left(y^2-4x+4\right)+30\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
Vậy GTNN là 30
Cho mk sủa lại tí :
\(2A=4x^2+4y^2-4xy-12y+42\)
\(=4x^2-4xy+4y^2-12+42\)
\(=4x^2-4xy+y^2+3y^2-12y+42\)
\(=\left(2x-y\right)^2+3\left(y-2\right)^2+30\ge30\)
\(\Rightarrow2A\ge30\Rightarrow A\ge15\Rightarrow\)GTNN là 15