K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)

\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra khi x=-3;y=4

30 tháng 10 2017

2015 nha bạn.

Bài 1: 

a: \(x^2+5x=x\left(x+5\right)\)

Để biểu thức này âm thì \(x\left(x+5\right)< 0\)

hay -5<x<0

b: \(3\left(2x+3\right)\left(3x-5\right)< 0\)

\(\Leftrightarrow-\dfrac{3}{2}< x< \dfrac{5}{3}\)

3 tháng 10 2021

còn bài 2 nữa ạ.

30 tháng 7 2019

\(A=x^2+2y^2+2xy-4x+6y+2020\)

\(A=\left(x^2+y^2+2^2+2xy-4y-4x\right)+\left(y^2+10y+25\right)+1991\)

\(A=\left(x+y-2\right)^2+\left(y+5\right)^2+1991\ge1991\)

Vậy \(Min_A=1991\)khi \(\hept{\begin{cases}x+y-2=0\\y+5=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-5\end{cases}}\hept{\begin{cases}x=7\\y=-5\end{cases}}\)

2 tháng 7 2018

\(N=2x^2+y^2+2xy-4x-2y+3\)

\(N=\left(x^2+2xy+y^2\right)+x^2-4x-2y+3\)

\(N=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)+1\)

\(N=\left(x+y-1\right)^2+\left(x-1\right)^2+1\)

Mà  \(\left(x+y-1\right)\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow N\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(N_{Min}=1\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

2 tháng 7 2018

\(N=2x^2+y^2+2xy-4x-2y\)\(+3\)

\(=\left(x^2+2xy+y^2\right)+x^2-2\left(2x+y\right)+3\)

\(=\left[\left(x+y\right)^2-2\left(2x+y\right)+1\right]+2+x^2\)

\(=\left(x+y+1\right)^2+x^2+2\)

\(Do\)\(\left(x+y+1\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)\(;\)\(y\)

\(x^2\)\(\ge\)\(0\)\(\forall\)\(x\)

=.>\(\left(x+y+1\right)^2+x^2+2\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)

=>\(N\)\(\ge\)\(2\)\(\forall\)\(x\)\(;\)\(y\)

Dấu = xảy ra khi: 

\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\x^2=0\end{cases}}\)

=>\(\hept{\begin{cases}x+y+1=0\\x=0\end{cases}}\)

=>\(\hept{\begin{cases}x+y=-1\\x=0\end{cases}}\)

=>\(\hept{\begin{cases}y=-1\\x=0\end{cases}}\)

Vậy \(N_{min}\)\(=\)\(2\)khi \(y=-1\)\(;\)\(x=0\)

Chúc pạn họk tốt~~~!!! :3

22 tháng 2 2019

\(A=2x^2+2xy+y^2-2x+2y+1\)

\(A=x^2+2xy+y^2+2x+2y+x^2-4x+4+1-4\)

\(A=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x^2-4x+4\right)-4\)

\(A=\left(x+y+1\right)^2+\left(x-2\right)^2-4\)

Vì \(\left(x+y+1\right)^2\ge0\forall x;y\)và \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-4\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy....

15 tháng 11 2015

A= / 2x - 2 /  + / 2015 -2x/  >/  / 2x-2 + 2015 -2x /  =  2013

A nhornhat = 2013 khi (2x-2).(2015-2x) >/0  =>   1</ x </ 2015

6 tháng 2 2022

+) \(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\)≥0 ∀x

\(A\)≥2 ∀x

Min A=2⇔\(x=3\)

+) \(B=11-x^2\)

Câu này chỉ tìm được max thôi nha

6 tháng 2 2022

\(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+2\ge2\)

Vậy GTNN của A là 2 khi x = 3