K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

11 tháng 12 2018

Bài 2 :

a) Phân thức A xác định \(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

b) \(A=\left(\frac{1}{x-2}-\frac{1}{x+2}\right)\cdot\frac{x^2-4x+4}{4}\)

\(A=\left(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\left(\frac{x+2-x+2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{\left(x-2\right)^2}{4}\)

\(A=\frac{4\cdot\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)\cdot4}\)

\(A=\frac{x-2}{x+2}\)

c) Thay x = 4 ta có :

\(A=\frac{4-2}{4+2}=\frac{2}{6}=\frac{1}{3}\)

Vậy.........

11 tháng 12 2018

\(4x^2y^3.\frac{2}{4}x^3y=4x^2y^3.\frac{1}{2}x^3y=2x^5y^4\)

\(\left(5x-2\right)\left(25x^2+10x+4\right)\)

\(=\left(5x-2\right)\left[\left(5x\right)^2+5x.2+2^2\right]\)

\(=\left(5x\right)^3-2^3\)

\(=125x^3-8\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

\(A=3x^2-5x+3=3(x^2-\frac{5}{3}x)+3\)

\(=3(x^2-\frac{5}{3}x+\frac{5^2}{6^2})+\frac{11}{12}=3(x-\frac{5}{6})^2+\frac{11}{12}\)

\((x-\frac{5}{6})^2\geq 0, \forall x\Rightarrow A\geq 3.0+\frac{11}{12}=\frac{11}{12}\)

Vậy A(min)$=\frac{11}{12}$ khi $x=\frac{5}{6}$

\(B=2x^2+2x+1=2(x^2+x+\frac{1}{4})+\frac{1}{2}\)

\(=2(x+\frac{1}{2})^2+\frac{1}{2}\geq 2.0+\frac{1}{2}=\frac{1}{2}\)

Vậy \(B_{\min}=\frac{1}{2}\) tại \((x+\frac{1}{2})^2=0\Leftrightarrow x=\frac{-1}{2}\)

AH
Akai Haruma
Giáo viên
10 tháng 8 2018

C)

\(C=2x^2+y^2+10x-2xy+27\)

\(=(x^2+10x+25)+(x^2+y^2-2xy)+2\)

\(=(x+5)^2+(x-y)^2+2\)

\((x+5)^2\ge 0, (x-y)^2\geq 0\Rightarrow C\geq 0+0+2=2\)

Vậy \(C_{\min}=2\) tại \(\left\{\begin{matrix} (x+5)^2=0\\ (x-y)^2=0\end{matrix}\right.\Leftrightarrow x=y=-5\)

30 tháng 11 2016

các bạn làm giùm mih đi câu nào cũng được

18 tháng 10 2019

Mình đang cần gấp . Đảm bảo k trả đầy đủ + kb :'>

18 tháng 10 2019

2.    \(Q=\left(x-3\right)\left(4x+5\right)+2019\)

        \(Q=4x^2+5x-12x-15+2019\)   

        \(Q=4x^2-7x+2004\)  

        \(Q=\left(2x\right)^2-2.2x.\frac{7}{4}+\frac{49}{16}+2019-\frac{49}{16}\) 

        \(Q=\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\)  

        \(Do\) \(\left(2x-\frac{7}{4}\right)^2\ge0\forall x\) \(Nên\) \(\left(2x-\frac{7}{4}\right)^2+\frac{32255}{16}\ge\frac{32255}{16}\)  

        \(\Rightarrow Q\ge\frac{32255}{16}\) 

         \(Vậy\) \(MinQ=\frac{32255}{16}\Leftrightarrow x=\frac{7}{8}\)

3. \(T=4\left(a^3+b^3\right)-6\left(a^2+b^2\right)\)  

   \(T=4\left(a+b\right)\left(a^2-ab+b^2\right)-6a^2-6b^2\) 

   \(T=4\left(a^2-ab+b^2\right)-6a^2-6b^2\)  (do a+b=1)

   \(T=4a^2-4ab+4a^2-6a^2-6b^2\) 

   \(T=-2a^2-4ab-2b^2\)

   \(T=-2\left(a^2+2ab+b^2\right)\) 

   \(T=-2\left(a+b\right)^2\)

   \(T=-2.1^2=-2.1=-2\) (do a+b=1)

   

NV
1 tháng 11 2021

\(B=\dfrac{\left(x-2\right)\left(x-3\right)\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)\)

\(B=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(B_{min}=-\dfrac{1}{4}\) khi \(x=\dfrac{3}{2}\)

1 tháng 11 2021

\(B=\dfrac{\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

với mọi x.

\(B_{min}=-\dfrac{1}{4}\) tại \(x=\dfrac{3}{2}\)

1:

ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)

 \(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)

\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)