Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk gợi ý, phần còn lại tự làm
a) \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)
b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
c) \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
d) \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
e) \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
a) A = x2 + 2x + 5
= x2 + 2x + 1 + 4
= ( x + 1 )2 + 4
Nhận xét :
( x + 1 )2 > 0 với mọi x
=> ( x + 1 )2 + 4 > 4
=> A > 4
=> A min = 4
Dấu " = " xảy ra khi : ( x + 1 )2 = 0
=> x + 1 = 0
=> x = - 1
Vậy A min = 4 khi x = - 1
b) B = 4x2 + 4x + 11
= ( 2x )2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét :
( 2x + 1 )2 > 0 với mọi x
=> ( 2x + 1 )2 + 10 > 10
=> B > 10
=> B min = 10
Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(\frac{-1}{2}\)
Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)
c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
= ( x2 + 5x ) 2 - 62
= ( x2 + 5x )2 - 36
Nhận xét :
( x2 + 5x )2 > 0 với mọi x
=> ( x2 + 5x )2 - 36 > - 36
=> C > - 36
=> C min = - 36
Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy C min = - 36 khi x = 0 hoặc x = - 5
d) D = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x
( y - 2 )2 > 0 với mọi y
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> D > 2
=> D min = 2
Dấu " = " xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy D min = 2 khi x = 1 và y = 2
b/ \(3-100x+8x^2=8x^2+x-300\)
\(\Leftrightarrow-101x=-303\)
\(\Rightarrow x=3\)
c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)
\(\Leftrightarrow25x+10-80x+10=24x+12-150\)
\(\Leftrightarrow-79x=-158\)
\(\Rightarrow x=2\)
d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow-6x=5\)
\(\Rightarrow x=-\frac{5}{6}\)
e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)
\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)
\(\Leftrightarrow13x=130\)
\(\Rightarrow x=10\)
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(\Rightarrow A_{min}=-3\) khi \(x=2\)
\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)
\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)
\(\Rightarrow C_{max}=21\) khi \(x=-4\)
\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)
\(\Rightarrow E_{max}=5\) khi \(x=2\)
a, \(A=\left(\frac{4}{2x+1}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4\left(x^2+1\right)}{\left(2x+1\right)\left(x^2+1\right)}+\frac{4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\left(\frac{4x^2+4+4x-3}{\left(x^2+1\right)\left(2x+1\right)}\right)\frac{x^2+1}{x^2+2}\)
\(=\frac{\left(2x+1\right)^2}{\left(x^2+1\right)\left(2x+1\right)}\frac{x^2+1}{x^2+2}=\frac{2x+1}{x^2+2}\)
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)
Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2-3x+5\)
\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\("="\Leftrightarrow x=5\Rightarrow x=0;5\)
c) \(C=4x-x^2+3\)
\("="\Leftrightarrow x=7\Rightarrow x=2;7\)
d) \(D=x^4+x^2+2\)
\("="\Leftrightarrow x=2\Rightarrow x=0;2\)
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Giups mik vs