K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

Vẫn là phép chia huyền thoại !

x^4+ax^3+bx^2+ c x^3+3x+2 x+a x^4+ 3x^2+2x ax^3+x^2(b-3)- 2x+ c ax^3 +3xa+2a x^2(b-3)-x(2-3a)+(c-2a)

Để \(x^4+ax^3+bx^2+c⋮x^3+3x+2\) thì \(x^2\left(b-3\right)-x\left(2-3a\right)+\left(c-2a\right)=0\)

\(\Leftrightarrow a=\frac{2}{3};b=3;c=\frac{4}{3}\)

12 tháng 3 2020

zZz Cool Kid_new zZz

trời đất anh có cần phải dùng cả phép trừ nữa k z ??

phép trừ để nháp thôi nhé !

14 tháng 8 2016

\(\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right)\left(x+c\right)\)

\(=x^3+cx^2+bx^2+bcx+ax^2+acx+abx+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right)x+abc\)

Đồnh nhất đa thức trên với đa thức \(x^3+ax^2+bx+c\),ta đc hệ điều kiện:

\(\hept{\begin{cases}a+b+c=a\left(1\right)\\ab+ac+bc=b\left(2\right)\\abc=c\left(3\right)\end{cases}}\)

Từ \(\left(1\right)a+b+c=a=>b+c=0=>c=-b\)

Thay vào (2),ta đc: \(ab+a.\left(-b\right)+b.\left(-b\right)=b=>ab-ab-b^2=b=>-b^2=b\)

\(=>b^2+b=0=>b\left(b+1\right)=0=>\orbr{\begin{cases}b=0\\b=-1\end{cases}}\)

+b=0 thì từ (1) suy ra c=0 ; a tùy ý

+b=-1 thì từ (1) suy ra c=1

Mà theo (3)\(abc=c=>a=\frac{c}{bc}=\frac{1}{-1}=-1\)

Vậy a=-1 hoặc a tùy ý ;b=0 hoặc b=-1;c=0 hoặc c=1

4 tháng 9 2017
đúg lúc mình cần bài này
30 tháng 6 2015

thiếu đề