Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(ax+b)(x2+cx+1)=x3-3x+2
ax3+acx2+ax+bx2+cbx+b=x3-3x+2
ax3+(acx2+bx2)+(ax+cbx)+b=X3-3x+2
ax3+x2(ac+b)+x(a+cb)+b=x3+0x2-3x+2
Đồng nhất các hệ số hai vế của đẳng thức,ta có:(dùng dấu ngoặc nhọn nha bạn)
a=1 a=1
ac+b=0 =>(dấu ngoặc nhọn) c=-2
a+cb=-3 b=2
b=2 (cái tính kết quả bạn có thế tính rõ hơn,mình làm hơi tắt)
Vậy a=1,b=2,c=-2 thì thỏa mãn đẳng thức đã cho
(Nếu không hiểu các bạn có thể xem trên google chuyên dề phương pháp hệ số bất định của bài phân tích đa thức thành nhân tử)
Xin mọi ngườ hãy giúp tui ai trả lời nhanh nất tui sẽ h cho làm ơn tui đang cần gấp
pp U.C.T @ nỗi ám ảnh là đây
\(RHS=x^4+\left(c+1\right)x^3+\left(d+c-2\right)x^2+\left(d-2c\right)x-2d\)
Sử dụng pp U.C.T ta có hệ sau : \(\hept{\begin{cases}c+1=1\\d+c-2=-1\\d-2c=a-and--2d=b\end{cases}< =>\hept{\begin{cases}c=0\\d=1\\a=1andb=-2\end{cases}}}\)
câu b để tí nx mình làm nốt
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2x+1-3x-1+x^2}{3x}\)
\(A=\frac{x^2-x}{3x}\)
\(A=\frac{x\left(x-1\right)}{3x}\)
\(A=\frac{x-1}{3}\)
b) Thay x = 4 ta có :
\(A=\frac{4-1}{3}=\frac{3}{3}=1\)
c) Để A thuộc Z thì \(x-1⋮3\)
\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)
\(\Rightarrow x\in\left\{1;4;7;...\right\}\)
Vậy.....
Vẫn là phép chia huyền thoại !
Để \(x^4+ax^3+bx^2+c⋮x^3+3x+2\) thì \(x^2\left(b-3\right)-x\left(2-3a\right)+\left(c-2a\right)=0\)
\(\Leftrightarrow a=\frac{2}{3};b=3;c=\frac{4}{3}\)
Tiểu biểu một câu thôi, mấy câu còn lại tương tự.
Tư tưởng là phân tích vế trái để sử dụng đồng nhất hệ số.
b) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3-ax^2+bx^2-ax-bx-b=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+x^2\left(-a+b\right)-x\left(a+b\right)-b=ax^3+c\cdot x^2-0\cdot x-1\)
Đồng nhất hệ số:
\(\hept{\begin{cases}-a+b=c\\a+b=0\\b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)
Các câu còn lại tương tự.