Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(n\in N\)
cho \(n\in\left(1..10\right)\)
từ 1...10 có 2 số 1 và 0 là co \(\sqrt[3]{n}\)bằng chính nó
từ 1...1000 có 1 số là 1000 vì nếu bỏ 3 chữ số tận cùng thì \(\sqrt[3]{1}=1\)
giả sử
Đặt: S = 1.2.3.4.5.6.7.8.9.10.11.12
S/100=3.4.6.7.8.9.11.12 (1) là một số nguyên
hai chữ số tận cùng của S là 00
Mặt khác, trong suốt quá trình nhân liên tiếp các thừa số ở vế phải của (1), nếu chỉ để ý đến chữ số tận cùng, ta thấy S100 có chữ số tận cùng là 6 (vì 3.4=12; 2.6=12; 2.7=14; 4.8=32; 2.9=18; 8.11=88; 8.12=96)
Vậy ba chữ số tận cùng của S là 600
\(3^{2^{2003}}=3^{\overline{...6}}=\overline{...9}\)
Vậy \(3^{2^{2003}}\)có tận cùng là 9
Đây không phải là bài lớp 9