Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có: \(5^{36}=\left(5^3\right)^{12}=125^{12}\)
\(11^{24}=\left(11^2\right)^{12}=121^{12}\)
\(Do\)\(125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
b) Ta có; \(6.5^{22}>5.5^{22}=5^{23}\)
\(72^{45}-72^{44}\)và \(72^{44}-72^{43}\)
Ta có : \(72^{45}-72^{44}=72.72^{44}-72^{44}=72^{44}\left(72-1\right)=72^{44}.71.\)
\(\)\(72^{44}-72^{43}=72.72^{43}-72^{43}=72^{43}.\left(72-1\right)=72^{43}.71.\)
Vì \(72^{44}.71>72^{43}.71\Rightarrow72^{45}-72^{44}>72^{44}-72^{43}.\)
VẬY .....
72^45-72^44 = 72^44 (72-1)
72^44-72^43 = 72^43 ( 72 -1 )
vì 72^44>72^43 => 72^44(72-1)>72^43(72-1)
Hay 72^45-72^44 > 72^44-72^43
\(2^{500}\)và \(5^{200}\)
\(2^{500}=\left(2^5\right)^{100}=32^{100}\)
\(5^{200}=\left(5^2\right)^{100}=25^{100}\)
Ta thấy :
\(32^{100}>25^{100}\Rightarrow2^{500}>5^{200}\)
\(31^{11}\) và \(17^{14}\)
\(31^{11}< 32^{12}=\left(2^5\right)^{12}\)
\(17^{14}< 18^{14}=\left(9.2\right)^{14}\)
Ta thấy \(\left(2^5\right)^{12}< \left(9.2\right)^{14}\Rightarrow31^{11}>17^{14}\)