K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

a) 10n + 1 - 6.10n

= 10n . 10 - 6 . 10n

= 10n . (10 - 6)

= 10n . 4

b) 2n + 3 + 2n + 2 - 2n + 1 + 2n

= 2n . 23 + 2n . 22 - 2n . 2 + 2n . 1

= 2n . (8 + 4 - 2 + 1)

= 2n . 11

23 tháng 7 2018

\(B=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right).\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(B=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(B=\frac{-\sqrt{x}-1}{\sqrt{x}}\). Vậy ....

15 tháng 8 2019

Chọn đáp án C.

Ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

23 tháng 7 2018

a, \(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{x+\sqrt{x}}\) (ĐKXĐ: \(x>0\))

\(=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

b, \(\frac{A}{B}=\frac{2+\sqrt{x}}{\sqrt{x}}:\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(\frac{A}{B}>\frac{3}{2}\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{3}{2}>0\)

\(\Leftrightarrow\frac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)

\(\Leftrightarrow2-\sqrt{x}>0\)

\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)

Kết hợp với điều kiện \(x>0\)ta có: \(0< x< 4\)

Vậy với \(0< x< 4\)thì \(\frac{A}{B}>\frac{3}{2}\)

27 tháng 7 2018

a) (Tự giải) ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

b) \(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

         \(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

         \(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

        \(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

          \(=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1-\frac{4}{\sqrt{x}-3}\)

c) Để Q là 1 số nguyên => \(1-\frac{4}{\sqrt{x}-3}\in Z\) 

                                    Mà \(1\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)

                                     => \(4⋮\sqrt{x}-3\)

Hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

ta lập bảng

\(\sqrt{x}-3\)1        -1      2     -2     4       -4       
x16 (TM)4 (KTM)25 (TM)1(TM)49(TM)vô lý

Vậy x={1;16;25;49}
 


 

23 tháng 7 2018

a)  ĐK:  a > 0;  b > 0

\(A=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)

\(=\frac{\sqrt{a}+\sqrt{b}+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}-b\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)-b\)

\(=\sqrt{a}+\sqrt{b}-\sqrt{a}+\sqrt{b}-b\)

\(=2\sqrt{b}-b\)

b)  \(A=1\)\(\Rightarrow\)\(2\sqrt{b}-b=1\)

                    \(\Leftrightarrow\)\(b-2\sqrt{b}+1=0\)

                   \(\Leftrightarrow\) \(\left(\sqrt{b}-1\right)^2=0\)

                   \(\Leftrightarrow\)\(\sqrt{b}-1=0\)

                   \(\Leftrightarrow\)\(\sqrt{b}=1\)

                   \(\Leftrightarrow\)\(b=1\)   (t/m ĐKXĐ)

Vậy  b=1

30 tháng 7 2018

=\(\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\):\(\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

=\(\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right)\):\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)=\(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\).\(\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

=\(\frac{-3}{\sqrt{x}+3}\)

30 tháng 7 2018

câu b c thì sao ạ

AH
Akai Haruma
Giáo viên
18 tháng 12 2021

Lời giải:
$\frac{5n+2}{2n+1}=\frac{2,5(2n+1)-0,5}{2n+1}=2,5-\frac{0,5}{2n+1}$
Để $\frac{5n+2}{2n+1}$ lớn nhất thì $\frac{0,5}{2n+1}$ nhỏ nhất 

$\Leftrightarrow 2n+1$ lớn nhất 

$\Leftrightarrow n$ lớn nhất. Trong tập số tự nhiên thì không tồn tại số tự nhiên lớn nhất nên không có GTLN 

Để $\frac{5n+2}{2n+1}$ nhỏ nhất thì $\frac{0,5}{2n+1}$ lớn nhất 

$\Leftrightarrow 2n+1$ nhỏ nhất $\Leftrightarrow n$ nhỏ nhất 

Với $n\in\mathbb{N}^*$ thì $n$ nhỏ nhất bằng $1$

$\Rightarrow \frac{5n+2}{2n+1}$ min $=\frac{5.1+2}{2.1+1}=\frac{7}{3}$