Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right).\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(B=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(B=\frac{-\sqrt{x}-1}{\sqrt{x}}\). Vậy ....
=\(\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right)\):\(\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=\(\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right)\):\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)=\(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\).\(\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=\(\frac{-3}{\sqrt{x}+3}\)
a, \(B=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{x+\sqrt{x}}\) (ĐKXĐ: \(x>0\))
\(=\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
b, \(\frac{A}{B}=\frac{2+\sqrt{x}}{\sqrt{x}}:\frac{\sqrt{x}+2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)
\(\frac{A}{B}>\frac{3}{2}\Leftrightarrow\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{3}{2}>0\)
\(\Leftrightarrow\frac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)
\(\Leftrightarrow2-\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow x< 4\)
Kết hợp với điều kiện \(x>0\)ta có: \(0< x< 4\)
Vậy với \(0< x< 4\)thì \(\frac{A}{B}>\frac{3}{2}\)
\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(DKXD:x>0;x\ne1\right)\)
\(\Leftrightarrow\left(\frac{\sqrt{x}.\sqrt{x}-1}{2\sqrt{x}}\right)^2\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\left(2\sqrt{x}\right)^2}\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right)\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{4x}.\frac{\left(\sqrt{x}-1-\sqrt{x}-1\right)\left(\sqrt{x}-1+\sqrt{x}-1\right)}{x-1}\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{4x}.\frac{-2.2\sqrt{x}}{x-1}\)
\(\Leftrightarrow\frac{\left(x-1\right)^2.-4\sqrt{x}}{4x.\left(x-1\right)}\)
\(\Leftrightarrow\frac{x-1}{-\sqrt{x}}\Leftrightarrow\frac{1+x}{\sqrt{x}}\Leftrightarrow\frac{\left(1+x\right).\sqrt{x}}{\sqrt{x}.\sqrt{x}}\Leftrightarrow\frac{\sqrt{x}+x\sqrt{x}}{x}\)
\(VT=\left(\frac{x\sqrt{x}+3\sqrt{3}}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{3-x}\right)\)
\(=\left(\frac{\left(\sqrt{x}+\sqrt{3}\right)\left(x-\sqrt{3x}+3\right)}{x-\sqrt{3x}+3}-2\sqrt{x}\right)\left(\frac{\sqrt{x}+\sqrt{3}}{\left(\sqrt{3}-\sqrt{x}\right)\left(\sqrt{3}+\sqrt{x}\right)}\right)\)
\(=\left(\sqrt{x}+\sqrt{3}-2\sqrt{x}\right)\left(\frac{1}{\sqrt{3}-\sqrt{x}}\right)\)
\(=\frac{\sqrt{3}-\sqrt{x}}{\sqrt{3}-\sqrt{x}}=1=VP\left(dpcm\right)\)
a) (Tự giải) ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
b) \(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}-3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1-\frac{4}{\sqrt{x}-3}\)
c) Để Q là 1 số nguyên => \(1-\frac{4}{\sqrt{x}-3}\in Z\)
Mà \(1\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
=> \(4⋮\sqrt{x}-3\)
Hay \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
ta lập bảng
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
x | 16 (TM) | 4 (KTM) | 25 (TM) | 1(TM) | 49(TM) | vô lý |
Vậy x={1;16;25;49}
\(a)\)\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt{x-3}}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}-3}{\sqrt{x}-3}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(R=\frac{3\sqrt{x}+3}{\sqrt{x}+3}.\frac{\sqrt{x}-3}{\sqrt{x+1}}\)
\(R=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}\)
\(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
\(b)\) Ta có : \(R< -1\)
\(\Leftrightarrow\)\(\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}< -1\)
\(\Leftrightarrow\)\(\frac{\sqrt{x}-3}{\sqrt{x}+3}< \frac{-1}{3}\)
\(\Leftrightarrow\)\(3\sqrt{x}-9< -\sqrt{x}-3\)
\(\Leftrightarrow\)\(4\sqrt{x}< 6\)
\(\Leftrightarrow\)\(\sqrt{x}< \frac{3}{2}\)
\(\Leftrightarrow\)\(x< \frac{9}{4}\)
Chúc bạn học tốt ~