K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

a) N = \(\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

N = \(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

N = \(\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

N = \(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

N = \(\frac{\sqrt{x}}{\sqrt{x}-2}\)

b) Với x \(\ge\)0; x \(\ne\)4

Ta có: N = \(\frac{1}{-3}\) <=> \(\frac{\sqrt{x}}{\sqrt{x}-2}=\frac{1}{-3}\)

=> \(-3\sqrt{x}=\sqrt{x}-2\)

<=> \(-4\sqrt{x}=-2\)

<=> \(\sqrt{x}=\frac{1}{2}\)

<=> \(x=\frac{1}{4}\)

c) x = 25 => N = \(\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-3}=\frac{5}{2}\)

19 tháng 8 2020

a) \(N=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

\(N=\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(N=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(N=\frac{\left(\sqrt{x}+2\right)\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(N=\frac{\sqrt{x}}{\sqrt{x}-2}\)

b) \(N=-\frac{1}{3}\)

\(\Leftrightarrow\frac{\sqrt{x}}{\sqrt{x}-2}=-\frac{1}{3}\)

\(\Leftrightarrow3\sqrt{x}=2-\sqrt{x}\)

\(\Leftrightarrow4\sqrt{x}=2\)

\(\Leftrightarrow\sqrt{x}=\frac{1}{2}\Rightarrow x=\frac{1}{4}\)

c) \(N=\frac{\sqrt{25}}{\sqrt{25}-2}=\frac{5}{5-2}=\frac{5}{3}\)

31 tháng 1 2017

a) 10n + 1 - 6.10n

= 10n . 10 - 6 . 10n

= 10n . (10 - 6)

= 10n . 4

b) 2n + 3 + 2n + 2 - 2n + 1 + 2n

= 2n . 23 + 2n . 22 - 2n . 2 + 2n . 1

= 2n . (8 + 4 - 2 + 1)

= 2n . 11

10 tháng 8 2015

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+......+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+......+\frac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\)\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+......+\frac{\sqrt{n-1}-\sqrt{n}}{n-1-n}\)

=\(-\left(\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+......+\sqrt{n-1}-\sqrt{n}\right)=-\left(1-\sqrt{n}\right)=\sqrt{n}-1\)

9 tháng 11 2018

thêm ĐK nha n>3 nữa

11 tháng 6 2021

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.