Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+y\right)^5-x-y=\left(x+y\right)^5-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^4-1\right]\)
= \(\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\) #áp dụng hàng đẳng thức#
c) \(x^9-x^7-x^6-x^5+x^4+x^3+x^2+1\)nhóm vào là đc
b) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3+\left(y^2+z^2\right)^3\)
=\(\left(y^2+x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]+\left(y^2+z^2\right)^3\)
= \(\left(y^2+z^2\right)\left[x^4+y^4+2x^2y^2-x^2z^2+x^4-y^2z^2+x^2y^2+z^4+x^4-2x^2z^2+y^4+z^4+2y^2z^2\right]\)
=\(=\left(y^2+z^2\right)\left(2x^4+2y^4+2z^4+3x^2y^2-3x^2z^2+y^2z^2\right)\)
a/ Nó là cái gì mà không phải nhân tử b
b/ \(\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
c/ \(3\left(2x+y+z\right)\left(x+2y+z\right)\left(x+y+2z\right)\)
Đặt \(x^2+y^2=a;y^2+z^2=b\)
\(\Rightarrow z^2-x^2=\left(y^2+z^2\right)-\left(x^2+y^2\right)=b-a\)
\(\Rightarrow A=a^3+\left(b-a\right)^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)^3\)
\(=\left(a-b\right)\left[a^2+ab+b^2-a^2+2ab-b^2\right]\)
\(=3ab\left(a-b\right)=3\left(x^2+y^2\right)\left(y^2+z^2\right)\left(x^2-z^2\right)\)
\(=3\left(x^2+y^2\right)\left(y^2+z^2\right)\left(x-z\right)\left(x+z\right)\)
\(B=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(B=x^3+y^3+z^3+3.\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\)
\(B=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Đây là hằng đẳng thức:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Đặt \(x=a;2y=b;z=c\)
\(A=\left(a+b-c\right)^3-a^3-b^3+c^3\)
\(A=\left[a+\left(b-c\right)\right]^3-a^3-b^3+c^3\)
\(A=a^3+3a\left(b-c\right)\left(a+b-c\right)+\left(b-c\right)^3-a^3-b^3+c^3\)
\(A=a^3-3a\left(b-c\right)\left(a+b-c\right)+b^3+3bc\left(b-c\right)-c^3-a^3-b^3+c^3\)
\(A=3\left(b-c\right)\left(a^2+ab-ac+bc\right)\)
\(A=3\left(b-c\right)\left(a+b\right)\left(a-c\right)\)
Khi đó ta có:
\(A=3\left(x-z\right)\left(x+2y\right)\left(2y-z\right)\)
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Công Minh Hoàng - Toán lớp 8 - Học toán với OnlineMath